FORMAT SCHEDA 16.2

SALDO PIANO INNOVAZIONE

TITOLO: Misurazione Automazione Travasi e Rincalzi (M.A.T.e R.) per Aceto Balsamico Tradizionale di Modena DOP

TITOLO: M.A.T.e R. Topping and Filling Automatic Measurement for Aceto Balsamico Tradizionale di

Modena DOP

EDITOR: Michele Montanari

RESPONSABILE ORGANIZZATIVO:

il responsabile della stesura del progetto e del coordinamento delle attività

Nome: **Mariangela** Cognome: **Montanari** Indirizzo via Ghiaurov, 50-56 – 41058 Vignola (MO) telefono 059 761671 e-mail <u>cadalnon@balsamico.farm</u> Ente di appartenenza Società Agricola La Ca' dal Non Acetaia 1883 di Montanari M e C ss

RESPONSABILE TECNICO-SCIENTIFICO:

Nome: Alessio Cognome: Giberti Indirizzo Via Gobetti 101, 40129 Bologna Ente di appartenenza

MISTER Smart Innovation

PAROLE CHIAVE in italiano: aceto balsamico tradizionale di Modena, invecchiamento controllato, AI,

travasi e rincalzi, mosto cotto

PAROLE CHIAVE in inglese: traditional balsamic vinegar of Modena, controlled ageing, AI, cooked must

CICLO DI VITA PROGETTO: Data Inizio 29/09/2022 Data fine 26/06/2024

STATO PROGETTO: Progetto Concluso

FONTE FINANZIAMENTO: PSR

COSTO TOTALE Euro. 58.820 % FINANZIAMENTO: 70%.

CONTRIBUTO RICHIESTO Euro 41.174

LOCALIZZAZIONE GEOGRAFICA: livello NUTS3 (province) MO

ABSTRACT: Il progetto ha raggiunto l'obiettivo di automatizzare, tramite sensori e metodi basati su machine learning e AI, le procedure alla base del processo di invecchiamento dell'aceto balsamico tradizionale di Modena DOP, con lo scopo di ottimizzare i tempi di esecuzione delle operazioni e standardizzare il processo, ottenendo così una migliore riproducibilità del prodotto, una riduzione dei costi di produzione e la tracciabilità evolutiva. Abbiamo ottenuto un misuratore automatico composto da un sensore di livello motorizzato controllato da un hardware che comunica i dati tramite WIFI a server remoto e tramite LO-RA controlla un attuatore sulla pompa di travaso e rincalzo per comandare l'esecuzione delle operazioni. Il complesso del misuratore insieme all'attuatore sono collegati ad un software di controllo nel quale è installato un duplicato digitale dei barili sui quali è possibile effettuare simulazioni, anche con l'ausilio di un algoritmo predittivo dell'evaporazione. Dopo aver validato le simulazioni il software trasmette al sistema hardware le informazioni che aiutano l'operatore ad effettuare le operazioni sui barili.

Obiettivi raggiunti dal progetto:

I problemi affrontati hanno riguardato in special modo rendere disponibile una adeguata tecnologia nella conduzione delle batterie di barili di ABTM la circolazione di dati gestionali nella fase di invecchiamento, per renderli disponibili in futuro anche per la fase di raccolta dell'uva, prima e per l'imbottigliamento/commercializzazione poi..

L'obiettivo dell'attività è stato quello di realizzare un sistema IoT automatizzato di precisione per la gestione delle operazioni di misura del livello di aceto, contenuto nelle botti, e di travaso e rincalzo.

I dispositivi realizzati sono:

- Il "Misuratore", costituito da due parti: il "core", in appoggio sulla botte grazie a supporti regolabili ed un case contenente "l'elettronica di controllo" che gestisce le diverse operazioni
- Il "Controllo della Pompa" con una elettronica dedicata riceve le istruzioni tramite protocollo wireless e controlla la pompa peristaltica, tramite appositi relays, per le operazioni di travaso e ricalzo.
- Il software di controllo e gestione

Riepilogo risultati ottenuti:

All'interno del *Core del Misuratore*, una coclea connessa ad un motore passo-passo controlla la discesa e la risalita di un sensore elettronico di contatto a circuito normalmente aperto che si chiude non appena le due punte toccano la superficie del liquido contenuto all'interno della botte.

Connesso ad esso, un sistema di controllo centrale dotato di un display con touch screen capacitivo da 2,8" permette di gestire tutte le operazioni necessarie.

All'interno del *Case di controllo del Misuratore*, che è il nodo centrale del sistema prototipale, è contenuta una scheda Arduino Nano 33 IoT che gestisce tutta la componentistica elettronica collegata ad essa.

L'utente, una volta posizionato ed acceso il dispositivo, ha la possibilità di scegliere se lavorare operare in modalità "offline" oppure connettersi alla rete WiFi e al Server dell'azienda "Ca dal Non". In questa seconda configurazione, durante ogni misura di livello del contenuto di aceto all'interno della botte, il dato raccolto viene inviato al Server Filemaker dove viene immagazzinato nel database e successivamente elaborato.

Non essendo mai stato affrontato in passato il tema dell'introduzione di nuova tecnologia nel sistema di produzione dell'ABTM i risultati del progetto pilota del piano sono stati di interesse per numerose aziende agricole, nonché per le associazioni della categoria di riferimento.

Descrizione delle attività

Sono stati analizzati , in modo analitico, puntuale ed automatizzato, i cambiamenti fisici che avvengono durante l'invecchiamento all'interno dei barili.

I dati raccolti sono stati inseriti in un software utilizzabile per gestire la produzione creando un duplicato digitale dei barili.

L'azienda agricola tramite il progetto pilota ha così costruito un prototipo di un sistema in grado di:

- ottimizzare i processi e renderli più competitivi dal punto di vista economico permettendo una notevole riduzione di tempo e maggiormente ripetibili nel tempo;
- avere dati previsionali sull'andamento dell'evaporazione negli anni consentendo di stabilire a
 priori le necessarie caratteristiche del mosto cotto e di conseguenza l'esigenza di ottimale
 maturazione dell'uva;
- sviluppare una tracciabilità puntale e in tempo reale del prodotto, con la possibilità futura di trasferire anche come supporto alla commercializzazione, in grado di aumentare il valore aggiunto del prodotto.

ABSTRACT: The project achieved the objective of automating, through sensors and methods based on machine learning and AI, the procedures underlying the aging process of traditional balsamic vinegar of Modena PDO, with the aim of optimizing the execution times of the operations and standardize the

process, thus obtaining better product reproducibility, a reduction in production costs and evolutionary traceability. We have obtained an automatic meter composed of a motorized level sensor controlled by hardware that communicates the data via WIFI to a remote server and via LO-RA controls an actuator on the transfer and backup pump to control the execution of the operations. The meter complex together with the actuator are connected to a control software in which a digital duplicate of the barrels is installed on which it is possible to carry out simulations, also with the aid of an evaporation predictive algorithm. After validating the simulations, the software transmits information to the hardware system that helps the operator carry out operations on the barrels.

Report finale progetto

L'obiettivo dell'attività è stato quello di realizzare un sistema loT automatizzato di precisione per la gestione delle operazioni di misura del livello di aceto, contenuto nelle botti, e di travaso e rincalzo. I dispositivi realizzati sono:

- Il "Misuratore", costituito da due parti: il "core", in appoggio sulla botte grazie a supporti regolabili ed un case contenente "l'elettronica di controllo" che gestisce le diverse operazioni
- Il "Controllo della Pompa" con una elettronica dedicata riceve le istruzioni tramite protocollo wireless e controlla la pompa peristaltica, tramite appositi relays, per le operazioni di travaso e ricalzo.
- Il software di controllo e gestione

All'interno del *Core del Misuratore*, una coclea connessa ad un motore passo-passo controlla la discesa e la risalita di un sensore elettronico di contatto a circuito normalmente aperto che si chiude non appena le due punte toccano la superficie del liquido contenuto all'interno della botte.

Connesso ad esso, un sistema di controllo centrale dotato di un display con touch screen capacitivo da 2,8" permette di gestire tutte le operazioni necessarie.

All'interno del *Case di controllo del Misuratore*, che è il nodo centrale del sistema prototipale, è contenuta una scheda Arduino Nano 33 IoT che gestisce tutta la componentistica elettronica collegata ad essa.

L'utente, una volta posizionato ed acceso il dispositivo, ha la possibilità di scegliere se lavorare operare in modalità "offline" oppure connettersi alla rete WiFi e al Server dell'azienda "Ca dal Non". In questa seconda configurazione, durante ogni misura di livello del contenuto di aceto all'interno della botte, il dato raccolto viene inviato al Server Filemaker dove viene immagazzinato nel database e successivamente elaborato. Il server è un computer iMac sul quale è stato preparato in precedenza da Michele Montanari un database Filemaker con tutti i campi necessari ai valori significativi da registrare, come i livelli di liquido e tutte le proprietà che vengono misurate, come il contenuto di zuccheri e l'acidità. Comprende anche le formule per i necessari calcoli, come ad esempio il volume di liquido a partire dal livello misurato, note le dimensioni geometriche della botte. La comunicazione con il server avviene grazie a un demone scritto appositamente per il progetto, che rimane continuamente in ascolto di messaggi con il protocollo MQTT, inviati dall'Arduino in corrispondenza di ogni misura, provvedendo a inserire il dato ricevuto nel record apposito. La comunicazione avviene anche nel senso inverso. Nelle operazioni di travaso e rincalzo, il livello da raggiungere nella botte in cui viene travasato il liquido può venire suggerito dall'applicazione preparata dal partner UniMoRe, che ha fittato un modello predittivo di regressione basato sui dati raccolti finora da Ca dal Non. In questo caso, infatti, è il server ad inviare un messaggio MQTT alla parte di controllo del Misuratore (se connesso alla rete WiFi) che rimane in attesa delle informazioni inviate dal modello predittivo al fine di posizionare correttamente il sensore all'interno della botte in cui travasare l'aceto (in caso di esito positivo, il dispositivo restituisce al Server un messaggio di conferma di avvenuta ricezione dei dati).

Una volta posizionato il sensore al punto calcolato da modello predittivo tramite l'utilizzo di una connessione LoRa di tipo "peer-to-peer" (punto-punto), il dispositivo di controllo del Misuratore manda i comandi (velocità della pompa e la durata) al dispositivo di controllo della pompa che aziona opportuni relays su una centralina posizionata sulla pompa peristaltica stessa, per gestire il travaso dell'aceto fino al raggiungimento del livello stabilito.

Il dispositivo di controllo della pompa peristaltica è costituito da una scheda Arduino Nano, un display TFT da 1,8" per la visualizzazione dei comandi ricevuti ed un chip SX1276 prodotto dalla Semtech per la connessione LoRa.

L'algoritmo frutto dello studio di machine Learning permette di ottenere una previsione forecast dell'evaporazione della botte, contenendo all'operatore di operare, grazie all'ausilio del software, una simulazione completa delle operazioni di' travaso prelievo e rincalzo all'interno delle batterie di ABTM. Una

volta validati i risultati delle simulazioni il sistema permette, tramite il complesso hardware/software sopra descritto, di trasferire le informazioni all'applicativo guidando l'operatore nell'effettuazione delle operazioni.

Final report

The aim of the activity was to create an automated precision IoT system for managing the operations of measuring the level of vinegar contained in the barrels, and of decanting and topping up.

The devices created are:

- The "Measuring Device", consisting of two parts: the "core", resting on the barrel thanks to adjustable supports and a case containing the "control electronics" that manages the various operations
- The "Pump Control" with dedicated electronics receives the instructions via wireless protocol and controls the peristaltic pump, via special relays, for the decanting and topping up operations.

The control and management software

Inside the Measuring Device Core, a screw connected to a stepper motor controls the descent and ascent of a normally open circuit electronic contact sensor that closes as soon as the two tips touch the surface of the liquid contained inside the barrel.

Connected to it, a central control system equipped with a 2.8" capacitive touch screen display allows you to manage all the necessary operations.

Inside the Meter Control Case, which is the central node of the prototype system, there is an Arduino Nano 33 IoT board that manages all the electronic components connected to it.

Once the device has been positioned and turned on, the user has the option of choosing whether to work in "offline" mode or connect to the WiFi network and the "Ca dal Non" company Server. In this second configuration, during each measurement of the vinegar content level inside the barrel, the collected data is sent to the Filemaker Server where it is stored in the database and subsequently processed.

The server is an iMac computer on which Michele Montanari previously prepared a Filemaker database with all the fields necessary for the significant values to be recorded, such as liquid levels and all the properties that are measured, such as sugar content and acidity. It also includes the formulas for the necessary calculations, such as the volume of liquid starting from the measured level, given the geometric dimensions of the barrel. Communication with the server occurs thanks to a daemon written specifically for the project, which continuously listens for messages with the MQTT protocol, sent by the Arduino in correspondence with each measurement, inserting the data received in the appropriate record. Communication also occurs in the opposite direction. In the decanting and topping up operations, the level to be reached in the barrel into which the liquid is decanted can be suggested by the application prepared by the partner UniMoRe, which has fitted a predictive regression model based on the data collected so far by Ca dal Non. In this case, in fact, it is the server that sends an MQTT message to the control part of the Meter (if connected to the WiFi network) which waits for the information sent by the predictive model in order to correctly position the sensor inside the barrel into which the vinegar is decanted (in case of a positive outcome, the device sends a message to the Server confirming receipt of the data). Once the sensor is positioned at the point calculated by the predictive model using a "peer-to-peer" (point-to-point) LoRa connection, the Meter control device sends commands (pump speed and duration) to the pump control device that activates appropriate relays on a control unit positioned on the peristaltic pump itself, to manage the transfer of vinegar until the set level is reached.

The peristaltic pump control device consists of an Arduino Nano board, a 1.8" TFT display for viewing the commands received and an SX1276 chip produced by Semtech for the LoRa connection.

The algorithm resulting from the machine Learning study allows obtaining a forecast of the evaporation of the barrel, allowing the operator to operate, thanks to the help of the software, a complete simulation of the transfer, collection and refilling operations inside the ABTM batteries. Once the simulation results have been validated, the system allows, through the hardware/software complex described above, to transfer the information to the application, guiding the operator in carrying out the operations.

Immagine del misuratore applicato ad un barile

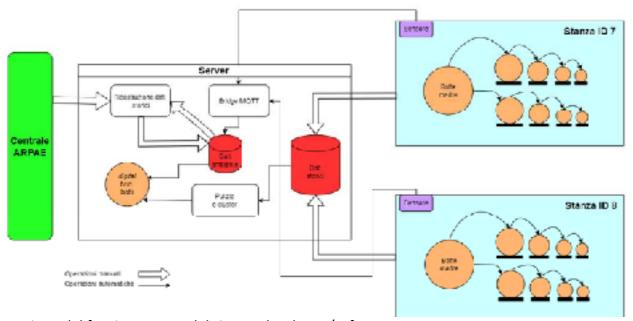


Illustrazione del funzionamento del sistema hardware/software

SUPPORTO ALLE FUNZIONI DI TRAVASO E RINCALZO

Strumento in attesa dei dati

Trasmissione dei dati dal device allo strumento

Schermate del software di gestione e controllo durante la trasmissione dati

SUPPORTO ALLE FUNZIONI DI TRAVASO E RINCALZO

Schermate del software di gestione e controllo durante la ricezione dati

Riepilogo risultati attesi:

Nell'azione 1, è stato sviluppato il prototipo di sensore mobile per monitoraggio dello stato di evaporazione nei barili. Il sensore è basato sulla misura della conducibilità, con verifica di efficacia anche per alti valori di densità del prodotto. Il prototipo è integrato con una soluzione software che scambia dati con il sistema in modo da poter calcolare la quantità di prodotto evaporata.

Nella azione 2, è stato testato e sviluppato l'algoritmo predittivo in grado di suggerire la potenziale evaporazione in base alle operazioni di prelievo, travaso e rincalzo simulate all'interno del gemello digitale di una batteria di ABTM. L'algoritmo è stato messo a punto con tecniche machine learning a partire dai dati storici disponibili in azienda.

Nell'azione 3, è stata realizzata l'ingegnerizzazione del software gestionale, e un prototipo dello stesso. Il software può censire le batterie e raccogliere i dati delle operazioni e delle misurazioni effettuate rispetto ai diversi parametri di processo direttamente dall'hardware. Il software consente inoltre di operare sul gemello digitale di una batteria di barili simulando le operazioni da effettuare e realizzando le schede e i programmi di lavoro che vengono poi trasmessi al sistema hardware che può essere utilizzato dall'operatore sia in fase di raccolta dati, sia in fase di esecuzione delle operazioni.

Summary of expected results:

In action 1, the prototype of a mobile sensor for monitoring the evaporation status in barrels was developed. The sensor is based on the measurement of conductivity, with verification of effectiveness even for high product density values. The prototype is integrated with a software solution that exchanges data with the system in order to calculate the quantity of evaporated product.

In action 2, the predictive algorithm capable of suggesting potential evaporation based on the sampling, decanting and topping up operations simulated within the digital twin of an ABTM battery was tested and developed. The algorithm was developed with machine learning techniques starting from the historical data available in the company.

In action 3, the engineering of the management software was created, and a prototype of the same. The software can census the batteries and collect data from the operations and measurements carried out with respect to the different process parameters directly from the hardware. The software also allows you to operate on the digital twin of a battery of barrels by simulating the operations to be carried out and creating the work sheets and programs that are then transmitted to the hardware system that can be used by the operator both in the data collection phase and in the execution phase of the operations.

Descrizione delle attività

E' stato sviluppato un sistema composto da un software e da un sensore di livello del liquido all'interno delle batterie di barili di ABTM, caratterizzate da irregolarità nelle forme e materiali. I dati registrati al variare di contenuto e temperature, insieme ai dati storici, hanno allenato un modello basato su machine learning, che aiuta a prevedere l'evaporazione annuale. Il modello è il cuore di un software in grado di mostrare all'operatore il gemello digitale della batteria di barili e di fargli effettuare infinite prove delle operazioni da effettuare. Raggiunto il risultato desiderato il sistema memorizza i dati, tenendo anche traccia dello storico e trasmette le informazioni all'operatore tramite un applicativo mobile nella fase di esecuzione delle operazioni di prelievo travaso e rincalzo..

Description of the activities

A system was developed consisting of software and a liquid level sensor inside the ABTM barrel batteries, characterized by irregular shapes and materials. The data recorded as the contents and temperatures vary, together with historical data, trained a model based on machine learning, which helps to predict annual evaporation. The model is the heart of a software capable of showing the

operator the digital twin of the barrel battery and allowing him to carry out infinite tests of the operations to be performed. Once the desired result has been achieved, the system stores the data, also keeping track of the history and transmits the information to the operator via a mobile application during the execution phase of the sampling, decanting and topping up operations.

SITO WEB DEL PROGETTO: https://balsamico.farm/it/progetto-di-ricerca/