

AVVISI PUBBLICI REGIONALI DI ATTUAZIONE PER L'ANNO 2015 DEL TIPO DI OPERAZIONE 16.1.01 "GRUPPI OPERATIVI DEL PEI PER LA PRODUTTIVITÀ E LA SOSTENIBILITÀ DELL'AGRICOLTURA"

FOCUS AREA 2A, 4B, 4C, 5A E 5E DGR N. 2268 DEL 28 DICEMBRE 2015

RELAZIONE TECNICA FINALE

DOMANDA DI SOSTEGNO n. 5005237

DOMANDA DI PAGAMENTO n. 5111847

FOCUS AREA: 5A

Titolo Piano	Gestione della rete di misura della falda ipodermica in funzione delle precipitazioni e del sostegno dei canali della rete dei Consorzi di Bonifica
Ragione sociale del proponente (soggetto mandatario)	Consorzio di bonifica di secondo grado per il Canale Emiliano Romagnolo
Elenco partner del Gruppo Operativo	Consorzio di bonifica di secondo grado per il Canale Emiliano Romagnolo – capofila ALMA MATER STUDIORUM – Università di Bologna – DICAM – partner effettivo Centro Nazionale delle Ricerche – IBIMET – partner effettivo C.R.P.V. – Centro Ricerche Produzioni Vegetali – Soc. Coop. – partner effettivo Società agricola Visentini di Mario Visentini e C. s.s. – partner effettivo Az. Agr. Cremonini Marco e C. Società Agricola s.s. – partner effettivo Fruit Modena Group Società Cooperativa Agricola – partner associato

Durata originariamente prevista del progetto (in mesi)	35
Data inizio attività	01/04/2016
Data termine attività (incluse eventuali proroghe già concesse)	31/03/2019

Relazione relativa al periodo di attività dal	01/04/2016	Al 31/03/2019
Data rilascio relazione	27/05/2019	

Autore della relazione	Roberto Genovesi	a a	
telefono		email	genovesi@consorziocer.it

Descrizione dello stato di avanzamento del Piano

Il Piano ha proposto la realizzazione di una serie di Azioni, le quali vanno, da un lato, a rendere più economico e razionale il processo di acquisizione del dato di altezza di falda ipodermica dalla rete di rilievo piezometrica regionale (Az. 3.1); dall'altro a quantificare sia dal punto di vista ambientale, sia economico, la presenza di questa risorsa nell'ambito della pianura emiliano - romagnola e, di conseguenza, il contributo che essa fornisce al soddisfacimento dei fabbisogni idrici delle colture (Az. 3.2, 3.3 e 3.4). Più in specifico, l'Azione 3.2 aveva come obbiettivo principale la creazione di un modello dell'interazione fra acqua nei canali irrigui e falda ipodermica, esportabile con ragionevole approssimazione a tutto il reticolo consortile regionale. L'Azione 3.3, invece, ha previsto di verificare se, e in che misura, una falda ipodermica prossima alla superficie possa influenzare il comportamento e/o la produttività di alcune colture selezionate. Le informazioni acquisite da entrambe, sono state utilizzate nell'ambito dell'Azione 4 per fornire una valutazione economica ed ambientale (attualmente si usa il termine ecosistemica) attinente alla ricarica della falda ipodermica determinata dall'invaso dei canali da parte dei locali Consorzi di Bonifica.

Allo stato attuale, tutte le Azioni sono state concluse. Nel corso dell'Azione 3.1 è stata messa definitivamente a punto la formula di previsione dell'altezza di falda prodotta da ARPAE e sono state individuate 63 stazioni falda (sulle attuali 130), per le quali essa è risultata statisticamente attendibile. Inoltre, la medesima formula è stata implementata sull'applicativo FaldaNet, per la produzione di un dato decadale automatico di altezza di falda. I cambiamenti apportati sono stati comunicati ai Consorzi di Bonifica responsabili delle letture manuali nei piezometri di propria competenza, rimandando ad incontri specifici i dettagli più tecnici. Le attività di ciascuna fase sono sinteticamente descritte nella presente Relazione tecnica, mentre ulteriori approfondimenti sono presenti nella raccolta degli allegati (file All_falda_finale.pdf) e sono contrassegnati da 1 a 5.

Per quanto riguarda l'Azione 3.2, è stato concluso il monitoraggio, attivato a partire dal 2016, sui 2 siti studio di Valle Gaffaro (FE) e Panzano (MO), per l'acquisizione di nuovi dati, oltre a quelli storici, sulle dinamiche che consentono l'alimentazione della falda ipodermica da parte delle acque di canali irrigui. Tali informazioni hanno permesso la messa a punto di un modello numerico da parte di DICAM (Università di Bologna), per la stima dell'innalzamento del livello di falda, conoscendo alcuni parametri quali il tirante del canale, la permeabilità dei suoli circostanti e l'altezza iniziale di falda. Questo procedimento di calcolo ha poi permesso di stimare, tramite l'utilizzo di tecniche GIS, il contributo medio alla risalita stagionale di falda in prossimità di tutti i canali irrigui della pianura emiliano – romagnola. Infine, gli stessi processi sono stati utilizzati per migliorare il calcolo di bilancio idrico su Irrinet, mediante apposite modifiche nel programma, tali da consentire l'inserimento di un contributo di falda aggiuntivo (Delta H), per tutti quegli appezzamenti ricadenti ad una determinata distanza da canali irrigui.

Le attività di ciascuna fase sono sinteticamente descritte nella presente Relazione tecnica, mentre ulteriori approfondimenti sono presenti nella raccolta degli allegati (file All_falda_finale.pdf) e sono contrassegnati da 6 a 14.

Anche l'Azione 3.3 ha visto concludersi il monitoraggio, attivato a partire dal 2016, sui 2 siti studio di Pomposa (FE) e S. Felice (MO). I dati acquisiti utilizzando un insieme composito di strumentazioni (Diver, Scheduler, EM38 etc.) hanno permesso, in alcuni casi, di verificare, con relativa certezza, l'influsso dell'innalzamento del livello di falda ipodermica sulle colture. Una prova determinante è stata acquisita nel 2018, correlando, la raccolta frutti su piante non irrigate nel sito di S. Felice con la distanza dal canale irriguo. Tali indicazioni si sono poi rivelate estremamente utili per l'elaborazione dei calcoli per l'ultima Azione 3.4

Le attività di ciascuna fase sono sinteticamente descritte nella presente Relazione tecnica, mentre ulteriori approfondimenti sono presenti nella raccolta degli allegati (file All_falda_finale.pdf) e sono contrassegnati da 15 a 26.

Infine, l'Azione 3.4, utilizzando precedenti schemi di correlazione fra altezza di falda e produzione delle colture, oltre a quanto acquisito nel corso dell'Azione 3.3, ha consentito di effettuare una prima stima dell'incremento percentuale medio di produzione per colture poste in prossimità di canali irrigui. Tramite tecniche GIS, utilizzando anche lo strato dell'uso agricolo del suolo 2018 di Agrea, si è giunti anche a una quantificazione di questo beneficio per tutto il territorio di pianura emiliano-romagnola.

Le attività relative a quest'Azione sono sinteticamente descritte nella presente Relazione tecnica, mentre ulteriori approfondimenti sono presenti nella raccolta degli allegati (file All_falda_finale.pdf) e sono contrassegnati da 27 a 29.

1.1 Stato di avanzamento delle azioni previste nel Piano

Azione	Unità aziendale responsabile	Tipologia attività	Mese inizio attività previsto	Mese inizio attività reale	Mese termine attività previsto	Mese termine attività reale
Azione 1	CER - CRPV	Esercizio Cooperazione	1	1	35	35
Azione 3.1	CER	Prove in campo	1	1	35	35
Azione 3.2	CER – DICAM - VISENTINI - CREMONINI	Investimenti funzionali - Prove in campo	1	1	35	35
Azione 3.3	CER – VISENTINI	Prove in campo	1	1	35	35
Azione 3.4	CER – CNR	Investimenti funzionali	4	4	35	35
Azione 4	CER - CRPV	Piano divulgazione	1	1	35	35

2 Descrizione per singola azione

2.1 AZIONE 1

2.1.1. Attività e risultati Azione 1

Azione 1		Esercizio della cooperazione
Unità	aziendale	CRPV Soc. Coop.

responsabile Descrizione attività Il CER, nel suo ruolo di capo mandatario ha mantenuto la funzione di coordinamento generale e di responsabilità tecnicoscientifica delle attività, demandando, in accordo con gli altri Partner, al CRPV il ruolo organizzativo per garantire il funzionamento tecnico ed amministrativo del Gruppo Operativo (GO). Al CRPV è stato affidato quindi il compito di pianificare le attività previste nel Piano, mettendo in atto tutte le iniziative necessarie alla realizzazione e al conseguimento dei risultati previsti. Per questo si è avvalso di proprio personale tecnico, amministrativo e di segreteria qualificato e dotato di esperienza pluriennale nel coordinamento tecnico-organizzativo di progetti di ricerca, sperimentazione e divulgazione a vari livelli, nonché nella gestione di comitati tecnici e gruppi di lavoro riguardanti i principali comparti produttivi. Attivazione del Gruppo Operativo gruppo di referenti coinvolti a vario titolo nel Piano.

La fase di attivazione del GO ha riguardato sia gli aspetti formali e amministrativi, sia il consolidamento degli obiettivi con l'intero

In merito agli aspetti formali, con particolare riferimento alle attività del Piano e ai relativi costi ammessi, il CRPV, unitamente al Responsabile Scientifico (RS) e ai Responsabili dei partner del GO, ha verificato la congruenza dei budget approvati rispetto alle attività da svolgere. Con questo passaggio si è autorizzata l'attivazione del GO, comunicata a tutti i partner tramite e-mail. Inoltre in questa fase si è proceduto alla costituzione formale del raggruppamento (ATS).

Una volta soddisfatti gli aspetti formali, è stata indetta una riunione del GO nella sua interezza (Bologna, 11-10-2016), alla presenza quindi di tutte le figure coinvolte per ogni partner. In questa sede, il Responsabile scientifico del Progetto (Roberto Genovesi) ha riproposto i contenuti e gli obiettivi del Piano, al fine di avere la più ampia condivisione possibile delle informazioni e impostare le modalità di realizzazione delle azioni d'innovazione.

Costituzione del Comitato di Piano

In occasione della riunione di attivazione si è anche proceduto alla costituzione del Comitato di Piano (CP) per la gestione e il funzionamento del GO, che è così composto:

- Responsabile Tecnico-Scientifico (RTS), Roberto Genovesi (CER);
- Responsabile Organizzativo del Piano (RO), Renato Canestrale (CRPV)
- Università di Bologna, Vittorio di Federico
 - CNR-Ibimet, Guido Maria Bazzani

- Azienda Agricola Cremonini, Marco Cremonini
- Azienda Agricola Visentini, Tarcisio Pattaro
- Fruit Modena Goup, Adriano Aldrovandi.

Gestione del Gruppo Operativo

Dalla data di attivazione del GO il Responsabile Organizzativo di Piano ha svolto una serie di attività funzionali a garantire la corretta applicazione di quanto contenuto nel Piano stesso, e in particolare:

- il monitoraggio dello stato d'avanzamento dei lavori;
- la valutazione dei risultati in corso d'opera;
- l'analisi degli scostamenti, comparando i risultati intermedi raggiunti con quelli attesi;
- la definizione delle azioni correttive.

Il Responsabile Organizzativo di Piano (RO), in stretta collaborazione con il Responsabile Tecnico-Scientifico (RTS), si è occupato di pianificare una strategia di controllo circa il buon andamento delle attività del Piano, attraverso un sistema basato sull'individuazione delle fasi decisive, cioè momenti di verifica finalizzate al controllo del corretto stato di avanzamento lavori. Allo stesso modo, l'RO e l'RTS si sono occupati di valutare i risultati/prodotti intermedi ottenuti in ciascuna fase. Tutto ciò agendo in coerenza con quanto indicato dalle procedure gestionali del CRPV (v. Autocontrollo e Qualità).

<u>Verifica dei materiali, strumenti e attrezzature impiegate in</u> campo e in laboratorio

A campione, l'RO ha verificato la congruenza tra le caratteristiche dei materiali e prodotti impiegati dai partner, rispetto a quanto riportato nel Piano. A tal fine l'RO ha eseguito alcune verifiche ispettive presso i partner, in coerenza con quanto indicato dalle procedure gestionali del Sistema Gestione Qualità del CRPV.

Preparazione dei documenti per le domande di pagamento

In occasione di questa prima domanda di pagamento (stralcio), l'RO e l'RTS, insieme a tutti i partner coinvolti, hanno completato l'analisi dei risultati intermedi ottenuti, nonché l'analisi della loro conformità a quanto previsto dal Piano. In particolare è stata verificata la completezza della documentazione relativa alle spese affrontate dai singoli soggetti operativi e raccolta la documentazione per la redazione del rendiconto tecnico ed economico.

Altre attività connesse alla gestione del GO

Oltre alle attività descritte in precedenza, il CRPV ha svolto una serie di attività di supporto al mandatario CER, come l'assistenza tecnico-amministrativa agli altri partner, le richieste di chiarimento e la redazione e l'inoltro di eventuali richieste di proroga e/o varianti.

Il CRPV si è inoltre occupato dell'aggiornamento della Rete PEI-AGRI in riferimento al Piano, come richiesto dalla Regione, al fine di stimolare l'innovazione, tramite l'apposita modulistica presente sul sito.

Autocontrollo e Qualità

Attraverso le Procedure Gestionali e le Istruzioni operative approntate nell'ambito del proprio Sistema Gestione Qualità, il CRPV ha lavorato al fine di garantire efficienza ed efficacia all'azione di Esercizio della cooperazione, come segue:

- Requisiti, specificati nei protocolli tecnici, rispettati nei tempi e nelle modalità definite;
- Rispettati gli standard di riferimento individuati per il Piano;
- Garantita la soddisfazione del cliente tramite confronti diretti e comunicazioni scritte;
- Rispettate modalità e tempi di verifica in corso d'opera definiti per il Piano;
- Individuati i fornitori ritenuti più consoni per il perseguimento degli obiettivi.

La definizione delle procedure, attraverso le quali il RO ha effettuato il coordinamento e applicato le politiche di controllo di qualità, sono la logica conseguenza della struttura organizzativa del CRPV. In particolare sono state espletate le attività di seguito riassunte.

Attività di coordinamento e di controllo

Le procedure attraverso le quali si è concretizzato il coordinamento del GO si sono sviluppate attraverso riunioni e colloqui periodici con il Responsabile Scientifico e con quelli delle Unità Operative coinvolte.

La verifica periodica dell'attuazione progettuale si è realizzata secondo cadenze temporali come erano state individuate nella scheda progetto. Più in particolare è stata esercitata sia sul funzionamento operativo che sulla qualità dei risultati raggiunti; in particolare è stata condotta nell'ambito dei momenti sotto descritti.

Verifiche dell'applicazione dei protocolli operativi in relazione a quanto riportato nella scheda progetto;

Visite ai campi sperimentali e ai laboratori coinvolti nella conduzione delle specifiche attività.

Tali riunioni e verifiche sono state svolte sia in modalità remota che presso Acqua Campus a Mezzolara di Budrio (BO) o presso la sede CER di Bologna.

Riscontro di non conformità e/o gestione di modifiche e varianti Non si sono verificate situazioni difformi a quanto previsto dalla scheda progetto.

Tutte le attività svolte come previsto nella procedura specifica

6

Grado di raggiungimento degli obiettivi, scostamenti rispetto al piano di lavoro, criticità evidenziate	di processo sono registrate e archiviate nel fascicolo di progetto e certificate attraverso visite ispettive svolte dal Responsabile Gestione Qualità del CRPV. Il Sistema Qualità CRPV, ovvero l'insieme di procedure, di misurazione e registrazione, di analisi e miglioramento e di gestione delle risorse, é monitorato mediante visite ispettive interne e verificato ogni 12 mesi da Ente Certificatore accreditato (DNV-GL). Gli obiettivi intermedi previsti nell'ambito di questa azione, compatibilmente con il periodo di riferimento di questa prima rendicontazione, sono stati completamente raggiunti. Nessuna criticità tecnico-scientifica è stata evidenziata durante l'attività svolta.
Attività ancora da realizzare	

2.1.2. Personale Azione 1

PERSONALE CER

Cognome e nome	Mansione/ qualification	Attività svolta nell'azione	Ore Cos	Costo
	Ricercatore Quadro preposto	Know how risparmio idrico in agricoltura	70	2.736,52
	Ricercatore Quadro preposto	Know how servizi di assistenza tecnica per l'irrigazione	56,25	2.217,04
	,	•	Totale	4.953,56

Personale CRPV

Cognome e nome	Mansione/ qualifica	Attività svolta nell'azione	Ore	Costo
200	Tecnico	Coordinamento	4	220,88
-	Segreteria	Segreteria	16	371,76
-	Tecnico	Coordinamento	4	73,92
·-	Tecnico	Coordinamento	16	446,84
-	Amministrativo	Supporto	12	446,52
	Amministrativo	Supporto	14,50	319,01
-		-	Totale	1.878,93

2.1.3. Trasferte

Nessuna spesa di trasferta prevista per il CER

Nessuna spesa di trasferta sostenuta per il CRPV

2.2. AZIONE 3

2.2.1. Attività e risultati Azione 3

Г	
Azione 3.1	L'azione prevede la riorganizzazione del sistema di letture delle stazioni della rete di rilievo regionale della falda ipodermica, attualmente per gran parte gestito dal personale dei Consorzi di Bonifica, tramite l'utilizzo di formule empiriche prodotte da ARPAE-SIMC e successivamente rielaborate da Agromet. Il risultato finale consiste nella sensibile riduzione dell'impegno da parte del personale dei Consorzi di Bonifica ed assegnando al CER l'attività di controllo dell'attendibilità del dato.
Unità aziendal	e CER
responsabile	
Descrizione attività	L'Azione 3.1 si compone di 6 fasi (da 1a ad 1f): il lavoro del primo anno si è concentrato prevalentemente sulle seguenti tre elencate nel cronoprogramma: 1a – Acquisizione e test su tutte le formule di previsione del dato di falda; 1b - Esame delle formule di previsione del dato di falda non attendibili; 1d - Letture di controllo e validazione nelle stazioni prescelte. Nel successivo anno si sono portate a termine le rimanenti fasi: 1c - Implementazione dell'algoritmo di previsione del dato di falda su FaldaNet; 1e - Riorganizzazione della rete di rilievo della falda; 1f - Produzione di documenti conclusivi. Per quanto riguarda la fase 1a, a settembre2016 è stato consegnato ad Agromet un elenco aggiornato, estratto dal database di Faldanet, di tutte le letture reali di livello di falda relative alle 131 stazioni attive ad inizio 2016 in Regione. Esse sono state utilizzate, assieme ai dati meteorologici estratti dai quadranti della rete ERG5, per la messa a punto di una formula di previsione del dato di falda migliorata rispetto a quella progettata da ARPAE nel 2012 e testata nel triennio successivo da CER. Ad ottobre 2016, Agromet ha definito per ciascuna stazione nuovi valori dei parametri HO, alfa e N° giorni, oltre ad una prima valutazione statistica dell'attendibilità dei valori di falda così calcolati, utilizzando come indicatori R², RMSE (Errore Quadratico Medio) ed EF - Efficiency Index (descrizione del presente indicatore in All. 4). A questi è stato aggiunto successivamente un quarto, definito CER_Index, il quale rappresenta la probabilità che un valore stimato di falda ricada nella stessa classe IRRINET del valore reale. In tal caso, pur con valori stimati e misurati differenti, non varierebbe il consiglio irriguo fornito da IRRINET. In un processo ciclico di analisi e revisione dei prodotti, si è giunti a marzo 2017 ad un documento intermedio contenente, per ciascuna stazione falda attiva, i parametri per il funzionamento dell'algoritmo, gli indicatori statistici ed una classe di attendibilità, de

e 1 livello), dotate di parametri statistici con valori ottimali e quindi una ridotta probabilità di errore fra dato di falda misurato e calcolato. Dopo i test eseguiti fra il 2017 ed il 2018 nella suddetta fase 1d, Agromet ha provveduto a modificare tutti i parametri di funzionamento, fino ad una versione definitiva di gennaio 2019, riportata in *All.* 1. Contemporaneamente, sono stati aggiornati gli indicatori statistici ed è stata definita una nuova classificazione di attendibilità delle stazioni falda: questo ha comportato sia promozioni (stazioni passate ad es. dal 2° livello al 1°), sia retrocessioni. Il documento in *All.* 1 è stato poi utilizzato per definire l'assetto della rete di rilievo falda nella fase 1e e sintetizzato, per quanto anche riguarda le competenze territoriali di lettura da parte dei rispettivi Consorzi di Bonifica, nell'*All.* 2.

La fase 1b ha implicato un lavoro di analisi, eseguito principalmente in ufficio, volto all'identificazione delle criticità della formula di falda per tutte quelle stazioni, nelle quali essa abbia presentato bassa significatività (sostanzialmente i sopracitati Livelli 2 e 3). Sono stati identificati tre fattori principali, in grado di influenzare ed alterare la lettura reale dell'altezza di falda nei piezometri rispetto al dato previsionale da formula. Essi sono:

- Distanza del sito da un canale irriguo o corso d'acqua di una certa importanza; a basse distanze, può verificarsi una variazione del livello di falda, alimentato dall'acqua che si allontana per infiltrazione dall'alveo dei medesimi.
- Uso del suolo: le colture arboree ed orticole sono irrigate di frequente; in particolari condizioni l'acqua si infiltra in profondità e, se raggiunge il livello di falda, ne influenza l'altezza;
- Tessitura del suolo: essa è ricavabile dai dati pedologici registrati durante la posa della stazione. In un ambiente alluvionale come quello della pianura emiliano romagnola, il suolo si compone di alternanze di orizzonti a tessitura spesso contrastante, alcuni dei quali possono supportare una falda profonda od effimere falde sospese. Come ipotesi iniziale, si è assunto che suoli con orizzonti a tessitura grossolana e quindi maggiormente permeabili (suoli franchi, franchi limosi, franchi sabbiosi) possano fornire letture reali di falda maggiormente aderenti a quanto previsto dall'algoritmo.

Un quarto ed ultimo fattore è stato identificato ma non ulteriormente elaborato, a causa dell'elevata difficoltà ad identificarne i limiti. Esso è rappresentato dagli errori di lettura, casuali o sistematici, effettuati dai rilevatori. Tipica è, ad esempio, la registrazione di un valore di profondità di falda calcolata dall'imboccatura del piezometro, ovvero senza escludere la tara relativa alla fuoriuscita del tubo dal terreno.

Per ciascuno dei tre primi parametri, si è poi proceduto al calcolo del valore da porre in relazione ad ogni stazione; ad es. tramite

tecniche GIS è stato identificato, per ciascuna di esse, l'uso del suolo e calcolata la distanza dal corso d'acqua più vicino. Le osservazioni pedologiche effettuate al momento della posa delle stazioni hanno consentito invece di associare una classe tessiturale prevalente del suolo. La tabella complessiva dei valori acquisiti è presente in *All. 3.*

Come passo successivo, si sono effettuati alcuni confronti statistici esaminando il numero di siti ricadente in ogni singolo livello di attendibilità e la corrispondente distribuzione nelle categorie afferenti i tre fattori esaminati. Sempre in *All. 3*, sono presentati i grafici, che illustrano i risultati ottenuti e le relative considerazioni.

Partendo da questa base dati, si è inoltre concordata con Agromet, già a partire dal 2017, l'esecuzione di analisi "cluster", al fine di identificare una possibile correlazione fra uno o più degli elementi sopra citati e la scarsa rispondenza osservata fra dato misurato e dato calcolato. Tali analisi, effettuate tramite il software "R" e incrociando gli stessi fattori sopra descritti, non hanno però portato nessun maggior dettaglio rispetto a quanto già descritto.

La fase 1c si è occupata dell'implementazione dell'algoritmo di previsione del dato di falda all'interno dell'applicativo web FaldaNet. Ad agosto 2017 sono stati attivati i primi contatti con la Software House Altavia, mentre I lavori sono stati avviati ufficialmente con un'apposita riunione operativa il 6 settembre 2017. Successivamente, è stato creato un apposito sito web di servizio all'indirizzo www2.altavianet.it/FaldaNET/Account/Login, su cui è stato scritto il codice per la procedura di produzione decadale automatica del dato di altezza di falda per le stazioni previste.

Questo primo prodotto è stato verificato tramite confronti, operati su una ventina di stazioni, fra la previsione del dato di falda ottenuta sul sito di servizio e quanto calcolato da ARPAE tramite il software PRAGA. Essi sono stati facilitati tramite un'apposita riga di comando on-line, messa a punto dalla software house. Le verifiche hanno dato esito positivo, quindi i valori di altezza di falda previsti dall'algoritmo scritto sul sito di test sono risultati gli stessi ottenuti da ARPAE coi propri calcoli. E' stata altresì prevista, nella sezione dedicata alla visualizzazione del Grafico misure, la presenza della curva determinata dall'algoritmo, identificata con un determinato colore, e, con un altro, i valori puntuali delle letture reali. Di tutti questi dati è stato anche reso possibile il download dal consueto comando "Download misure" e nei formati già previsti (xls o csv). Le specifiche tecniche del lavoro afferente a questa fase sono descritte in *All. 5*.

La fase 1d è stata attivata a maggio 2017, con la consegna ad ogni Consorzio di Bonifica, dell'elenco delle stazioni falda in quel momento a maggior attendibilità statistica (Superwells e 1 livello) e ricadenti nel territorio di propria competenza (L'elenco realizzato in quel periodo è presente nell'*All. 2* della Relazione intermedia). Per esse sono state seguite diverse modalità di rilievo della falda fino a dicembre 2018, ma comunque consistenti in un numero di letture più diradato (circa una al mese). Le stesse, come previsto nel Piano, sono state utilizzate come verifica della stabilità della capacità previsionale della formula nel tempo.

La fase 1e ha rappresentato il momento conclusivo delle attività di elaborazione dell'algoritmo di previsione del dato di falda (fase 1a) e di verifica della sua stabilità nel tempo tramite le letture manuali effettuate in fase 1d.

Nel complesso, e in relazione alle letture effettuate nel periodo 2017 - 2019, sui 65 siti individuati nel 2017 si è verificato un declassamento di attendibilità statistica su 11 siti (10 passati al 2° Livello ed uno addirittura al 3°, lo 07RE) e, parallelamente, una promozione di 8 siti (3 divenuti SuperWells e 5 di 1° Livello). Si è notato che, in riferimento al declassamento, in ben 5 casi su 11 il parametro statistico interessato da valori in peggioramento è stato l'RMSE (radice dell'errore quadratico medio).

Il prodotto finale è costituito dall'elenco definitivo di 63 stazioni in **All. 2** (tabella "Elenco stazioni falda prescelte per l'esecuzione di letture manuali diradate di controllo dell'algoritmo ARPAE").

Per quanto riguarda gli obbiettivi operativi della fase 1e, resta da comunicare a ciascun Consorzio di Bonifica l'elenco delle stazioni falda di propria competenza su cui applicare letture diradate di controllo dell'algoritmo. E' stato previsto di effettuare, per ragioni organizzative e di completezza delle informazioni, tale comunicazione in occasione dell'annuale incontro Cerlink del 18 aprile 2019, cui partecipano tutti i Consorzi di Bonifica.

Tutti i documenti conclusivi prodotti nel corso dell'Azione (fase 1f) sono riportati in allegato alla presente Relazione tecnica (file All_falda_finale.pdf) e sono numerati da 1 a 5.

Grado di raggiungimento degli obiettivi, scostamenti rispetto al piano di lavoro, criticità evidenziate Gli obbiettivi dell'Azione, nel suo complesso, sono stati raggiunti.

Per quanto concerne la fase 1a, oltre all'acquisizione dell'algoritmo di previsione del dato di falda aggiornata a gennaio 2019, si è ottenuto il listato completo dei parametri di calcolo per tutte le attuali 130 stazioni. L'utilizzo di un set di principali di parametri statistici, ha consentito di ripartire le medesime all'interno di 4 classi, delle quali le prime due (Superwells e 1 Level) sono associate ad una previsione del dato di falda sufficientemente attendibile. Rispetto a quanto previsto nel Piano, per aumentare la capacità di analisi, sono stati aggiunti due nuovi parametri statistici: Efficiency

Index – EF (*All.* 4) e Cer_Index, ideato alla bisogna e precedentemente descritto.

Per quanto riguarda la fase 1b, le analisi statistiche effettuate hanno mostrato una certa correlazione fra l'andamento delle caratteristiche ambientali selezionate in fase di studio preliminare e l'attendibilità del dato di falda formulare. Se sembra accertato che un trend esista, tuttavia esso non è probante, se si esclude forse il fattore più lineare, ossia la distanza della stazione falda rispetto ai canali irrigui.

Anche analisi statistiche più raffinate, come quelle effettuate tramite il software "R", non hanno portato nessun maggior dettaglio rispetto a quanto osservato utilizzando semplici grafici a dispersione.

Date queste risultanze, si è ritenuto non opportuno avviare ulteriori indagini in campo, com'era stato invece ipotizzato nel 2017, in quanto non supportate da una sufficientemente solida base statistica.

La fase 1c, attivata alla fine dell'estate 2017, è stata completata senza problemi e, dopo una serie di test condotti in parallelo con ARPAE, si è provveduto ad implementare il sito all'indirizzo: http://faldanet.consorziocer.it/Faldanet/retefalda/index Esso è raggiungibile tramite link anche dal sito del CER, partendo dall'elenco dei servizi elencati in fondo all'Home Page.

La fase 1d, attivata nei tempi previsti, ha comportato inizialmente la selezione delle 65 stazioni falda su cui effettuare le letture reali con una minor frequenza. Essendo il primo periodo di test, si è deciso di programmare una lettura al mese, ossia 7 letture da giugno a dicembre 2017, in luogo delle quattro previste, ritenute il minimo per un confronto ragionato con il dato di falda derivato da formula. Va evidenziato che la lettura degli strumenti ha costituito la vera e propria criticità non solo del Piano, ma dell'intero meccanismo attualmente in atto, poiché sono frequenti carenze e ritardi nelle letture. Di fatto, diverse stazioni sono state lette nel periodo non più di 4-5 volte, anche a causa di preesistenti accordi (ad es. a partire dal 2011 per il Ferrarese) coi locali Consorzi di Bonifica. Inoltre, molte stazioni nella provincia di Ravenna sono già rilevate da anni dal CER, in luogo del Consorzio di Bonifica della Romagna Occidentale. Tale trend è proseguito nel 2018: l'altezza di falda di una buona parte delle stazioni selezionate è stata letta manualmente non più di 3 – 4 volte.

La fase 1e ha consentito di definire l'elenco definitivo di stazioni falda sulle quali effettuare un numero ridotto di letture nel corso dell'anno. Complessivamente, si è passati da 65 stazioni nel 2017 a 63 nel 2019, al netto delle promozioni e dei declassamenti, il che

indica circa un 50% di stazioni sul totale dotati di sufficiente attendibilità per quanto riguarda l'utilizzo della formula di previsione. Vi è altresì da notare che tale numero è al netto di quelle 4 – 5 stazioni che, per cause varie, vengono mediamente distrutte nel corso di ogni anno. Se, col lavoro di manutenzione gestito volontariamente dal CER, non è possibile ripristinarle in loco, esse non possono più fornire il loro dato di lettura a FaldaNet, e quindi non rientrano neppure nel novero di quelle soggette a previsione formulare. Nel solo 2018, sono state perse in questo modo le stazioni 02BO, 19MO e 29FE (2 Superwells e un 1° livello). Solo la 29FE, con la nuova sigla 37FE, è stata ripristinata a diversi chilometri di distanza, e saranno quindi necessari almeno tre anni completi di letture per avere la base dati necessaria per accedere alla previsione formulare.
Nulla da segnalare per quanto riguarda la fase 1f, concernente la produzione dei documenti conclusivi, come già detto riportati in

allegato alla presente relazione.

Attività	ancora	da roa	lizzara
ALLIVILA	ancora	uaica	IIZZAI C

nessuna

Azione 3.2	L'Azione prevede di completare il quadro delle sperimentazioni regionali relative allo studio delle interazioni fra acqua infiltrata dai canali irrigui in terra e falda ipodermica, sia tramite l'installazione di due nuovi siti di monitoraggio, sia con l'utilizzo di software per la modellazione numerica, che consentano di definire l'andamento del fenomeno nel tempo e nello spazio.
Unità aziendal	e CER
responsabile	
Descrizione attività	All'interno dell'Azione 3.2 le prime quattro fasi descritte nel Piano (2a, 2b, 2c, 2d) sono state attivate già nel 2016, mentre le rimanenti tre (2e, 2f, 2g), nel 2018. Anche per il 2018 è stata prevista un'apposita check list (<i>All. 6</i>), che consentisse di organizzare i rilievi previsti all'interno dei siti di monitoraggio (4, contando anche i due previsti nell'Azione 3.3). In tale foglio di lavoro, ogni fase del Piano è stata suddivisa in subfasi, comprendenti l'elenco degli strumenti necessari al loro svolgimento, i tempi previsti ed effettivamente effettuati, le note relative ad eventuali migliorie, i contrattempi e le osservazioni. La fase 2a è stata già completata nel 2016 ed è consistita nell'installazione di due nuovi siti di monitoraggio, già individuati in precedenti attività di studio presso Panzano (MO) e Valle Gaffaro (FE), attraversati rispettivamente dal Canal Torbido e dallo Scolo Beccaccino. Nel primo sito si è proceduto alla posa di n° 6 piezometri in PVC della lunghezza di 300 cm (150 cm nel secondo),

distribuiti in 2 allineamenti (transect) da 3 strumenti a distanze crescenti (25, 75 e 150 m). I suoli rilevati durante le trivellate effettuate per la posa sono stati descritti in apposite schede ed attribuiti ad Unità Tipologiche di Suolo (UTS), secondo le modalità previste dal Servizio Geologico, Sismico e dei Suoli regionale (*All.* 7). La posa è avvenuta tra maggio e giugno 2016, anche se letture, per motivazioni esposte più avanti, sono entrate in pieno esercizio solo a partire da dicembre 2016.

Durante la posa si è proceduto ad un'iniziale georeferenziazione della posizione dei piezometri con strumenti di precisione stimata ± 5 m. Successivamente, tramite il supporto dei Consorzi di Bonifica della Burana e della Pianura di Ferrara, si è giunti a definire tutte e tre le coordinate (X, Y ed anche Z, ossia la quota s.l.m.) con precisione centimetrica. Tali misurazioni sono anche state effettuate lungo alcune sezioni degli adiacenti canali, nel periodo di svasamento.

Gli strumenti di rilievo in continuo dell'altezza di falda (Diver) sono stati posizionati a dicembre 2016, quindi in ritardo di un trimestre rispetto al cronoprogramma, per le stesse motivazioni esposte già nella Relazione intermedia a proposito dei piezometri.

La fase 2b ha preso avvio come da cronoprogramma a luglio 2016 ed è stata operativa fino a dicembre 2018. Essa ha compreso sia le letture quindicinali del livello di falda nei piezometri dei due siti (anche della conducibilità elettrica nel sito del Ferrarese – *All. 8*), sia le letture del tirante in una sezione prevista dei canali adiacenti. Le prime sono state svolte dalle locali Aziende Agricole, mentre la misura del tirante è stata effettuata dai tecnici dei locali Consorzi di Bonifica della Burana e della Pianura di Ferrara.

Il CER ha inoltre curato personalmente lo scarico dei dati rilevati dai Diver (a partire da dicembre 2016) e la misura delle portate all'interno dei canali Torbido e Beccaccino, sia tramite River Surveyor (strumento natante per il rilievo delle velocità lungo una sezione di canale) che mulinello idrometrico (*All.* 11). Queste ultime sono state eseguite, ovviamente a canali invasati, a partire da luglio 2016.

La fase 2c ha previsto l'elaborazione dei dati acquisiti durante il monitoraggio e la produzione di documenti utili al supporto ed alla verifica della successiva fase 2d. Negli *All. 9 e 10* sono rispettivamente rappresentati i grafici ricavati dalle letture dei Diver e alcune immagini dell'andamento della falda nel tempo. Queste ultime sono state ottenute tramite interpolazione GIS dei valori letti dai rilevatori, utilizzando il metodo IDW (Inverse Distance Weighted). Anche se non previsto nel Piano, sono state effettuate elaborazioni di questo tipo anche per il sito di S. Felice, selezionato per le attività della successiva Azione 3.3. Sia le immagini ricavate per questo sito che per quello di Panzano hanno

evidenziato l'azione di ricarica della falda da parte dei rispettivi canali, con la quota delle isofreatiche che si innalza in loro prossimità. Nel sito di Valle Gaffaro, anche per questioni morfologiche e topografiche, le isofreatiche non presentano particolari variazioni in prossimità del canale Beccaccino. Sono forse più significative altre interpolazioni col metodo IDW, effettuate sempre su questo sito, ma prendendo in esame i valori di salinità riscontrati durante le letture del livello di falda. In particolare, sembra di osservare, in autunno, una diminuzione dei valori di conducibilità elettrica nelle acque di falda e nei pressi del Beccaccino, forse per merito dell'azione di scolo da esso esercitata. Una sensibile diminuzione di salinità avviene però solo grazie all'irrigazione per infiltrazione laterale, attuata in estate (riduzione che può raggiungere i 400 – 500 μS/cm).

La fase 2d, in collaborazione con il DICAM dell'Università di Bologna, ha preso avvio con un'apposita riunione tenuta il 25/11/2016. L'attività svolta da questo Ente può essere sintetizzata nei seguenti punti, esaminati analiticamente nell'*All.* 12:

- (1) Analisi dello stato dell'arte e dei codici disponibili per simulare l'interazione canale-falda: lo studio dell'interazione tra canali e falda viene condotto utilizzando modelli numerici.
- (2) Analisi dei dati di monitoraggio provenienti dai siti studio: per poter calibrare il modello. Al fine di renderlo applicabile alle diverse condizioni di interazione ritenute rappresentative a scala regionale, si è reso necessario analizzare i dati raccolti durante le precedenti campagne di monitoraggio. In particolare, sono stati acquisiti i dati relativi ai siti "storici" di monitoraggio della falda sui canali Pia Est, Cavezzo e Stiolo.
- (3) Svolgimento di simulazioni numeriche, dapprima sul solo sito di Stiolo, includendo ed escludendo alternativamente l'apporto pluviometrico deducibile dalle serie storiche.
- (4) Creazione della formula di previsione del contributo da parte del canale sulla falda ipodermica circostante, la quale utilizza 3 parametri principali: Ksat (conduttività idraulica a saturazione), h (tirante idrico nel canale) e dWT (profondità freatica rispetto al fondo del canale). L'innalzamento di quota della falda è calcolabile per due tipologie tessiturali principali: canali su terreni clay loam (limoso-argillosi, come il Pia Est) e canali su terreni sandy loam (franco-limosi, come lo Stiolo ed il Diversivo di Cavezzo).
- (5) Validazione della formula tramite confronto con dati reali piezometrici provenienti dai siti di monitoraggio, soprattutto passati, ma anche attuali (Panzano, S. Felice).

Il risultato finale consiste quindi in un algoritmo, applicabile alla massima parte dei canali irrigui in terra presenti in Regione, per cui, conosciuti i valori dei parametri sopra citati, è possibile ottenere, con buona approssimazione, il valore numerico del

contributo alla falda ipodermica circostante.

La fase 2e ha comportato l'estensione del modello, messo a punto nella fase 2d, alla rete irrigua consortile del territorio regionale. Per la sua realizzazione ci si è avvalsi prevalentemente di tecnologie GIS, descritte sempre in *All. 12* al punto (4). Fra le varie problematiche prese in esame, la creazione di uno strato digitale dei canali irrigui in terra, la traduzione del modello sviluppato in un linguaggio, che ne permettesse l'implementazione in GIS, la creazione di un database contenente tutti i valori dei parametri necessari (H, Ks, dWT) in corrispondenza dei vari tratti di canale. Tramite un codice scritto in linguaggio *Python*, si è riusciti ad associare un valore di contributo di falda (Delta H) ad ogni segmento di canale e da qui, con operazioni GIS di *buffering*, estenderlo al territorio circostante (fasce di pertinenza).

L'ultimo passo è stato eseguito nel corso della fase 2f, ossia l'implementazione delle fasce di pertinenza sopra realizzate e degli associati valori di contributo di falda (Delta H), all'interno dell'applicativo web IrriNet. Le procedure informatiche eseguite dalla Software House incaricata sono estesamente descritte in All. 14. Nella sintesi, il meccanismo, adeguatamente testato, consente ad ogni Azienda iscritta ad IrriNet e per ogni appezzamento inserito, di ottenere un valore di contributo di falda (Delta H). Tale valore sarà poi utilizzato dall'applicativo durante l'elaborazione del bilancio idrico e quindi per il consiglio irriguo. Ovviamente, tale contributo риò anche essere nullo se il centroide dell'appezzamento (cosiddetto plot) si trova a distanza, superiore a un certo limite, da ogni canale irriguo.

Tutti i documenti conclusivi prodotti nel corso dell'Azione (fase 2g) sono riportati in allegato alla presente Relazione tecnica (file All_falda_finale.pdf). Più precisamente, essi comprendono la sezione di allegati dal numero 6 al 14, come anche testimoniano i rimandi precedentemente inseriti.

Grado di raggiungimento degli obiettivi, scostamenti rispetto al piano di lavoro, criticità evidenziate Gli obbiettivi dell'azione, nel loro complesso, sono stati raggiunti, con alcune necessarie precisazioni di seguito descritte.

La realizzazione della fase 2a, ha incontrato alcune difficoltà tecniche relative alla posa dei piezometri, di seguito descritte:

Nel sito di Valle Gaffaro hanno potuto essere posati solo piezometri della lunghezza di 170 cm (sono quelli siglati P3 nella rete di rilievo regionale della falda), rispetto a quelli identificati nel Piano della lunghezza di 300 cm (cosiddetti P4). La motivazione risiede nella spinta idrostatica determinata dalla falda molto superficiale associata alla liquefazione delle sabbie molto fini che costituiscono il

- suolo presente nel sito. Essa ha contrastato la posa manuale, costringendo alla scelta di strumenti più corti. Comunque, trattandosi del monitoraggio delle oscillazioni di una falda che, nel corso del periodo irriguo, permane abbastanza superficiale, tale cambiamento ha influenzato marginalmente le letture.
- Poco tempo dopo la posa dei piezometri, sono stati osservati nei tubi intasamenti a diverse profondità, causati da risalita di sedimenti fini, tali da inficiare in parte la validità delle letture effettuate. Si è pertanto provveduto nell'autunno 2016 ad installare all'interno dei tubi di diametro 6,3 cm altri tubi della stessa lunghezza di diametro minore (5 cm), rivestiti di geotessuto drenante con grammatura 40 gr/mq. Allo stesso tempo, sia i Consorzi di Bonifica Pianura di Ferrara che della Burana hanno provveduto a dotare i piezometri più esposti alle lavorazioni e quindi ad eventuali rotture, di pozzetti di protezione.
- Dal momento che i sopra citati intasamenti avrebbero potuto causare ai Diver problemi sia di lettura del livello di falda sia di estrazione dai piezometri, essi sono stati calati all'interno dei piezometri solo dopo effettuate le sistemazioni sopra descritte, cioè a dicembre 2016.

Nel corso della fase 2b, si è osservato, nel 2016, che la velocità del flusso idrico nei canali era mediamente troppo bassa per l'utilizzo efficace dello strumento natante River Surveyor, il quale offre le migliori prestazioni in canali ampi e dotati di una certa velocità. Per le successive misure, a partire dal 2017, si è quindi optato per il solo mulinello idrometrico.

Inoltre, non sempre, causa inconvenienti e/o esigenze lavorative prioritarie, si sono ottenute letture manuali cadenzate secondo lo schema previsto, anche se la variazione si è mantenuta attorno a un ragionevole 5 – 10% del totale. In alcuni casi le letture sono state effettuate dallo stesso CER in occasione dello scarico dei Diver.

Più grave la concomitante rottura, per difetti di fabbrica, di alcuni Diver nel 2018. Essa ha determinato, per necessari tempi tecnici, come l'invio di strumenti in sostituzione dalla casa madre, l'interruzione di letture per tempi anche piuttosto lunghi. Nella maggior parte dei casi si è potuto fare ricorso alle letture manuali per tentare di ricostruire le curve dell'andamento della quota di falda, anche se ovviamente non con la medesima attendibilità e completezza.

La fase 2c è stata portata a termine senza problemi e nei tempi previsti. In **All. 10** sono state riportate quelle, fra le mappe IDW, che potevano riuscire visivamente più significative per la

comprensione del flusso di falda dai canali ai piezometri. Il database creato consente di creare mappe per ogni data di rilievo disponibile, ivi compresa la conducibilità elettrica letta nel sito di Valle Gaffaro.

Nell'ambito della fase 2d, fin dalla prima riunione con DICAM, si è scelto di adottare per le simulazioni il modello fisico-matematico definito VS2DI al posto di SUTRA, in quanto più adatto a descrivere il flusso dell'acqua all'interno di un mezzo insaturo, ossia la parte di suolo al di sopra della falda ipodermica. Al fine di testare questo nuovo modello, è stata fornita a DICAM tutta la base dati, costituita da letture del livello di falda, tessitura dei suoli, quote dei piezometri e sezioni dei canali, relativa a due precedenti aree di monitoraggio (canale Pia Est e canale Stiolo). Per questi ultimi, la georeferenziazione, sempre a precisione centimetrica, è stata effettuata dal Consorzio di Bonifica dell'Emilia Centrale, nell'ambito delle relazioni e delle collaborazioni in essere fra lo stesso Consorzio ed il CER.

Su questi canali il CER ha inoltre effettuato, non previste nel Piano, ulteriori misure della conducibilità idraulica satura (Ks), utilizzando strumenti quali il permeametro Guelph e l'infiltrometro a doppio anello (All 13). I valori riscontrati nelle misure eseguite col doppio anello, sono risultati congruenti con altri da prove effettuate in passato sugli stessi canali e con altri metodi (prove di invaso).

Vi è infine da sottolineare che la formula di previsione del contributo da parte del canale sulla falda ipodermica, messa a punto da DICAM, raggiunge le migliori performances con Ks tipici delle classi tessiturali precedentemente citate, (clay – loam e sandy – loam). Solo con un certo grado di approssimazione, che forse potrà essere migliorato in futuro, esso può essere applicato anche a suoli maggiormente permeabili, quali sono, ad esempio, quelli presenti nella fascia costiera.

L'estensione del modello, messo a punto nella fase 2d, alla rete irrigua consortile del territorio regionale, operata nella fase 2e ha inevitabilmente comportato un'approssimazione legata alla qualità dei documenti utilizzati per ottenere valori dei parametri Ks, dWT e H applicabili ad ogni segmento di canale. Quindi, per i primi due parametri, l'attendibilità è quella della Carta di conducibilità idraulica satura dei suoli di pianura in scala 1:50.000 (Ks_RER) e della Carta di Estendibilità del Dato di Falda (Carta EDF), le quali sono periodicamente aggiornate. Per quanto riguarda il parametro relativo al tirante medio (H), non essendo tale dato disponibile nel database dei canali, è stato desunto dalla nomenclatura associata a ciascuno (per es. fossetta, distributore, cavo). In tal modo sono state identificate tre classi standard di tirante, grosso modo corrispondenti a canali irrigui di piccole, medie e grandi dimensioni. Tale dato è evidentemente

	perfezionabile, acquisendo gradualmente ulteriori informazioni tecniche da parte dei Consorzi.
	In fase progettuale, era stato previsto, all'interno della fase 2f, la possibilità di mostrare le fasce di pertinenza anche ad un certo livello di zoom sulla mappa presente in Home Page di FaldaNet. Sulla base di ulteriori considerazioni, basate prevalentemente sul concetto di non complicare ulteriormente la navigazione agli utenti, sia per quanto riguarda il caricamento della mappa, sia per quanto riguarda la comprensione del nuovo oggetto che si andava ad inserire, questa opzione non è stata attivata.
Attività ancora da realizzare	Tutte le fasi dell'Azione 3.2 sono state completate.

Azione 3.3	La presente Azione ha come obbiettivo principale di verificare se e in che misura la produttività di alcune colture selezionate possa essere influenzata, in prossimità di un corso d'acqua, da un livello di falda ipodermica più superficiale.
Unità aziendale	CER
responsabile	
Descrizione attività	All'interno dell'Azione 3.3, le prime quattro fasi descritte nel Piano (3a, 3b, 3c e 3d) sono state attivate già a partire dal 2016, mentre la 3e è stata eseguita nel 2018. Come per l'Azione 3.2, dato il numero e la frequenza dei rilievi previsti all'interno dei siti di monitoraggio, si è deciso di produrre un'apposita check list (<i>All.</i> 15). In tale foglio di lavoro, ogni fase del Piano è stata suddivisa in sub-fasi, comprendenti l'elenco degli strumenti necessari al loro svolgimento, i tempi previsti e realmente effettuati, le note relative ad eventuali migliorie, contrattempi, osservazioni. La fase 3a è consistita nell'installazione di due nuovi siti di monitoraggio, già individuati in precedenti attività di studio presso S. Felice s.P (MO) e Pomposa (FE), posti in prossimità rispettivamente del canale Ramedello e del ramo terminale del Po di Volano. Come nell'Azione 3.2, in ogni sito si è proceduto alla
	posa di n° 6 piezometri in PVC della lunghezza di 300 cm, distribuiti in 2 allineamenti (transect) da 3 strumenti a distanze crescenti (25, 75 e 150 m). I suoli rilevati durante le trivellate effettuate per la posa sono stati descritti in apposite schede ed attribuiti ad Unità Tipologiche di Suolo (UTS), secondo le modalità previste dal Servizio Geologico, Sismico e dei Suoli regionale (<i>All. 16</i>). La posa è avvenuta tra maggio e giugno 2016, anche se letture, per le stesse motivazioni esposte a proposito dell'Azione 3.2, sono entrate in pieno esercizio solo a partire da dicembre 2016. Analogamente all'Azione 3.2, si è proceduto ad una

georeferenziazione di precisione centimetrica di tutti i piezometri e di alcune sezioni sia del canale Ramedello che del Po di Volano. La sezione idraulica di quest'ultimo corso d'acqua di grandi dimensioni, è stata rilevata utilizzando un apposito drone natante dotato di sonar e GPS di proprietà del Consorzio di Bonifica della Pianura di Ferrara.

Gli strumenti di rilievo in continuo dell'altezza di falda (Diver) sono stati sistemati a dicembre 2016.

Allo stesso modo, sono stati selezionati nei due appezzamenti, in prossimità di ciascun piezometro, i gruppi di piante da sottoporre ad alcune delle operazioni di monitoraggio previste in fase 3c. A febbraio 2017, per i soli gruppi di piante dell'appezzamento coltivato a pero sul canale Ramedello, per potere procedere ad irrigazioni differenziate, si è realizzato un locale bypass dell'impianto a goccia. Ciò ha consentito di eseguire nelle due stagioni 2017 e 2018, rilievi in prossimità dei piezometri, sia su piante irrigate che su piante non irrigate. Nel sito di Pomposa, invece, come già previsto nel Piano, non è stato possibile sottrarre gruppi di piante all'irrigazione, causa la necessità di apportare continuamente acqua a ciascuna di esse per contrastare la sottostante falda salina.

La fase 3b ha implicato, nel 2016, la configurazione di entrambi gli appezzamenti su IrriNet, inserendo tutti i parametri di base necessari al calcolo desunti sia dalle aziende agricole (coltura, sesto d'impianto, vigore portinnesto, tipo di irrigazione etc.), sia dalle attività svolte nell'ambito del Piano (per es. tessitura del suolo ricavata dalla descrizione pedologica operata al momento della posa dei piezometri). Nel 2017 e nel 2018, invece, sono stati calcolati i bilanci idrici (*All.* 18), utilizzando il valore di altezza di falda secondo le letture reali dei seguenti piezometri:

- nel sito di S. Felice, la sequenza P19, P20 e P21 (posti rispettivamente a 25, 75 e 150 m dal canale Ramedello);
- nel sito di Pomposa, la sequenza P10, P11 e P12 (posti rispettivamente a 25, 75 e 150 m dal Po di Volano).

A ciascuno dei sei bilanci idrici è corrisposto pertanto uno scenario, caratterizzato da un differente contributo irriguo da parte della falda, in modo da potere quantificare separatamente le eventuali variazioni in termini di volumi irrigui stagionali.

La fase 3c ha preso avvio come da cronoprogramma a luglio 2016 e ha compreso alcune attività di monitoraggio identiche all'Azione 3.2 e svolte sia dalle locali Aziende Agricole (letture quindicinali del livello di falda nei piezometri dei due siti e della conducibilità elettrica nel sito del Ferrarese – in *All.* 17), sia dai tecnici dei locali Consorzi di Bonifica (letture dell'altezza del tirante in una sezione prevista dei canali adiacenti agli appezzamenti e relativa conducibilità elettrica delle acque nel sito del Ferrarese).

Il CER ha invece curato personalmente tutti gli altri rilievi, ossia: rilievi della temperatura fogliare, stima della biomassa traspirante, raccolta dei frutti, campionamenti degli orizzonti di suolo per la stima della % di umidità, rilievi con sonda ad induzione elettromagnetica EM38, campionamento delle acque per la determinazione dei componenti ionici (tutti a partire dagli inizi di agosto 2016). Lo scarico dei dati rilevati dai Diver è stato invece effettuato a partire da dicembre 2016, a causa dei problemi di intasamento dei piezometri già descritti a proposito dell'Azione 3.2.

La fase 3d è inerente all'elaborazione dei dati acquisiti durante il monitoraggio dei siti, per ottenere indicatori che consentano di stimare, sia l'insorgere di condizioni di stress idrico o salino nei gruppi di piante, sia la presenza di un trend di comportamento fra gruppi di piante in relazione alla distanza dal canale/corso d'acqua. Oltre a grafici con l'andamento del livello di falda derivati dalle letture dei Diver (*All. 9*) e dell'umidità nel terreno (*All. 19*), sono stati prodotti anche i seguenti documenti:

- Variazione dell'indice di stress idrico Tc-Ta (analogo al più complesso CWSI) rilevato tramite Scheduler (pistola a raggi infrarossi) con la distanza delle piante dal canale/corso d'acqua; (All. 20);
- Variazione, in relazione alla distanza dal canale, della media delle dimensioni dei calibri dei frutti raccolti per ciascun gruppo di piante; (All. 21);
- Stima della biomassa traspirante, sempre in relazione alla distanza dal canale, tramite analisi della variazione dell'indice di Canopy Cover; (All. 22);
- Variazione, secondo la distanza dal Po di Volano (solo sito di Pomposa), della speciazione ionica nelle acque raccolte nei piezometri due volte l'anno; (All. 23);
- Andamento dell'umidità nel suolo degli appezzamenti monitorati tramite mappe create tramite l'interpolazione spaziale IDW (Inverse Distance Weighted) dei punti rilevati dallo strumento EM38. (All. 24).

Tutti i documenti conclusivi prodotti nel corso dell'Azione costituiscono la fase 3e e sono riportati in allegato alla presente Relazione tecnica (file All_falda_finale.pdf). Più precisamente, essi comprendono la sezione di allegati dal numero 15 al 26, come anche riportato nei rimandi, precedentemente inseriti.

Le risultanze di tale lavoro sono poi state utilizzate per sviluppare il calcolo del beneficio ecosistemico da falda previsto nell'Azione 3.4.

Grado di raggiungimento degli obiettivi, scostamenti

Gli obbiettivi dell'azione, nel loro complesso, sono stati raggiunti, con alcune necessarie precisazioni di seguito descritte.

rispetto al piano di lavoro, criticità evidenziate

Il monitoraggio attuato nei due siti ha comportato l'utilizzo di differenti tecniche e strumenti, anche al fine di verificare quali, e in che misura, potessero essere più adatte a riscontrare eventuali influssi da parte della falda ipodermica sulle colture. Questo, da un lato, ha consentito di acquisire esperienza e di raffinare tecniche e protocolli (si veda, ad esempio, quanto scritto più oltre a proposito dell'*All.* 26), dall'altro ha evidenziato i loro limiti. Indicazioni piuttosto significative sono state ottenute dal campionamento dei suoli per la determinazione della % di umidità, dai rilievi con EM38, dalla raccolta frutti, almeno in relazione all'ultimo anno. Tali attività hanno infatti chiaramente evidenziato la variazione dell'umidità del suolo e del numero e peso dei frutti in relazione alla distanza dal canale.

Altre indicazioni interessanti, ma sicuramente da approfondire con una maggiore frequenza di rilievi, sono state offerte dalla speciazione ionica (si veda ad es. il grafico 48 nell'*All. 23*). In questi casi è percepibile in prossimità del canale (o, in questo caso, del fiume) una diluizione della concentrazione degli ioni delle acque di falda e quindi una riduzione della salinità.

Altri metodi, come il calcolo del Canopy Cover o dell'indice CWSI non hanno invece offerto risultati rilevanti. Questo può essere legato sia alla difficoltà della tecnica di rilievo, pur nei miglioramenti attuati nel corso del triennio, come nel caso del Canopy Cover, o alla necessità di effettuare rilievi su un maggior numero di piante, come nel caso dello Scheduler per il rilievo dell'Infrarosso.

Anche la scelta del sito ha avuto ovviamente la sua importanza, tant'è che il sito di S. Felice ha potuto fornire alcune importanti indicazioni, grazie anche al fatto che era stato possibile effettuare il bypass dall'irrigazione di alcune piante e quindi verificare il loro comportamento in condizioni non artificiali. Questo non è stato possibile nel sito di Pomposa, per il quale era condizione necessaria alla sopravvivenza dei peri, il costante mantenimento, tramite irrigazione, di un cuscinetto di acqua dolce sopra la falda salina.

Andando a esaminare nello specifico quanto previsto nell'Azione, sono state messe in opera o variate le seguenti attività:

Nel sito – studio di Pomposa (FE), in collaborazione col Servizio Geologico, Sismico e dei Suoli regionale (SGSS), si è effettuata a maggio 2017 la posa di ulteriori 4 piezometri, posti a gruppi di due, a 25 e 150 m dal Po di Volano. All'interno di ogni piezometro, sono stati sistemate sonde con datalogger integrato del SGSS, in grado di rilevare in continuo, non solo il livello di falda, ma anche la conducibilità elettrica. Un'ulteriore sonda è stata posata all'interno di un tubo di calma ancorato alla parte di sponda sul Po di Volano prospiciente l'azienda Pomposa. I dati ricavati da questi strumenti hanno consentito di percepire

- le variazioni stagionali di salinità sia nel corso d'acqua, sia a diverse profondità nei piezometri, fornendo quindi un ulteriore contributo alla comprensione dell'interazione fra falda salina e colture (i dati aggiornati al 2018 sono presentati in *All. 25*).
- Come già nei siti monitorati per l'Azione 3.2, si è verificata nel 2018 la rottura, per difetti di fabbrica, di alcuni Diver, con i già citati disagi ed interruzioni di letture per periodi significativi, come emerge anche dai grafici presentati. Nella maggior parte dei casi si è potuto fare ricorso alle letture manuali per tentare di ricostruire le curve dell'andamento della quota di falda, anche se ovviamente non con la medesima attendibilità e completezza.
- All'interno della fase 3c, il protocollo di raccolta frutti per ciascuna pianta, da effettuarsi lungo un metro lineare complessivo su una branca posta a mezza altezza e conseguente misura dei pesi e dei calibri, è stato modificato sia nel corso del 2017, che nel corso del 2018 (All. 26). In particolare, il cambiamento operato nel 2018 ha previsto la raccolta di un numero statisticamente molto più significativo di frutti, ossia la produzione di due piante intere in corrispondenza di ogni piezometro. Non è probabilmente un caso, come mostrato in All. 21, che proprio nel 2018 giungano, e nell'azienda di S. Felice, i risultati più significativi nel confronto fra produzione e distanza dal canale. Differenze molto minori sussistono invece, a parità di distanza, fra la produzione raccolta nelle piante sottoposte a bypass dell'impianto a goccia e quella raccolta dalle adiacenti piante irrigate.
- Sempre in relazione all'attività di raccolta frutti, nell'azienda di S. Felice la siccità intervenuta nel corso del 2017 ha costretto la medesima ad una raccolta anticipata in tutto il pereto rispetto a quanto previsto e concordato. La raccolta frutti secondo il protocollo è stata pertanto possibile solo lungo l'allineamento di piante più occidentale (corrispondente ai piezometri P22, P23 e P24).
- Sulla base dei positivi risconti ottenuti nel corso dei rilievi 2016, si è deciso di utilizzare i dati provenienti dal sito studio di S. Felice, non solo per gli obbiettivi dell'Azione 3.3, ma anche per quelli dell'Azione 3.2. In tal senso, in collaborazione col Consorzio della Bonifica Burana, sono stati eseguiti rilievi topografici di precisione sia sulla quota dei piezometri sia sul prospiciente canale Ramedello per la perimetrazione di 2 sezioni trasversali significative per il calcolo del contorno bagnato Oltre a ciò, tramite mulinello idrometrico, è stata misurata, all'altezza delle medesime sezioni, la velocità della corrente nel periodo irriguo e sono state effettuate misure di conducibilità idraulica satura

	tramite permeametro Guelph ed infiltrometro a doppio anello (<i>All. 11 e All. 13</i>).
Attività ancora da realizzare	Tutte le fasi dell'Azione 3.3 sono state completate.

Azione 3.4	Valutazione economica relativa al beneficio per le colture fornito dalla ricarica della falda ipodermica sul territorio regionale. Sono prese in esame tutte le colture presenti negli appezzamenti, in qualche modo intercettati od intersecati dalle fasce di pertinenza dei canali, secondo lo strato dell'uso agricolo del suolo AGREA più recente.
Unità aziendale responsabile	CER
Descrizione attività	Le attività inerenti quest'Azione, svolte in collaborazione con Cnr- lbimet, si sono concentrate inizialmente sulla raccolta e analisi di lavori pubblicati da CER e da altri enti, sulla tematica in oggetto. In questi documenti, erano già stati realizzati, attorno agli anni '90, grafici e curve di tendenza, che mettevano in relazione la produzione di una coltura con la profondità di falda ipodermica (All. 27). Quest'ultima era stata fatta variare disponendo un determinato numero di parcelle su un terreno con pendenza regolare, alimentato da un fosso mantenuto a livello costante. Fra le colture prese in esame, si è posta particolare attenzione, nell'ambito dell'Azione, a pero, mais e pomodoro, identificate come rappresentative rispettivamente di tutte le colture arboree, erbacee ed orticole. Per quanto riguarda il pero, sono stati utilizzati a supporto anche tutti i dati produttivi acquisiti nel corso delle precedenti Azioni (All. 21). Il passo successivo, attuato da Cnr- Ibimet, è consistito nell'analisi e validazione delle relazioni precedentemente determinate (All. 28), tramite il programma freeware GAMS (General Algebraic Modeling System), il quale è stato ideato, appunto, per modellare e risolvere equazioni di tipo lineare e non lineare, come quelle che mettono in relazione falda e produzione. In base a tali considerazioni, è stato anche stabilito un valore soglia massimo, corrispondente alla profondità falda di 40 cm dal piano campagna, oltre il quale le funzioni non apportano un incremento di produzione, ma al contrario la limitano (a causa dei rischi di asfissia per le radici). Come ultimo, ma determinante passaggio, si è dovuto estendere le relazioni ottenute e validate, all'intero territorio regionale di pianura. Nel corso dell'Azione 3.2 (fase 2e), già si era ottenuto uno strato digitale con le fasce di pertinenza associate ad ogni singolo segmento di canale irriguo, per le quali era stato calcolato un valore di incremento di falda (Delta H). In quest'Azione, si è anche acquisito lo strato dell'uso a

loro volta raggruppate, secondo la tipologia, nelle tre grandi classi di arboree (sigla ARB), erbacee (ERB) e orticole (ORT). Questi due strati sono stati incrociati con tecniche GIS (Intersect) per ottenerne uno solo, con tutti gli attributi sopra indicati e la consistenza areale di ogni poligono pari ad un appezzamento ritagliato, in toto o in parte, secondo l'estensione della fascia di pertinenza. Sempre in ambiente GIS è stato scritto un programma in *python*, contenente, fra l'altro, gli estremi delle formule di calcolo, acquisite e validate nella prima fase, descriventi l'incremento di produzione in relazione all'altezza di falda ed alla classe colturale.

L'esecuzione del programma ha consentito l'effettuazione, per ciascun poligono, di due differenti serie di calcoli:

- La produzione stimabile, per la classe di coltura presente, considerando in input l'altezza media di falda annua;
- La produzione stimabile, per la classe di coltura presente, considerando in input l'altezza media di falda annua, incrementata del contributo da parte dei canali (Delta H).

Applicando questi calcoli a tutti i poligoni selezionati nel territorio di pianura regionale, sono stati ottenuti due totali di valori di produzione. La loro differenza ([produzione stimata con altezza falda incrementata dai canali] - ([produzione stimata con altezza falda standard]) ha determinato un valore, misurato in q.li/ha, corrispondente ad un incremento percentuale della produzione. I risultati finali dei calcoli sono descritti nell'ultima tabella dell'*All.* 29.

Tutti i documenti conclusivi prodotti nel corso dell'Azione sono riportati in allegato alla presente Relazione tecnica (file All_falda_finale.pdf); più precisamente, essi comprendono la sezione di allegati dal numero 27 al 29, come anche riportato nei rimandi, precedentemente inseriti.

Grado di raggiungimento degli obiettivi, scostamenti rispetto al piano di lavoro, criticità evidenziate

Nella presente Azione, si è prodotta, come previsto, una valutazione economica, con riferimento all'incremento potenziale di produzione delle colture dovuto al maggior quantitativo di acqua disponibile, determinato dall'innalzamento della falda in prossimità dei canali. Volendo esaminare la questione da un altro punto di vista, tale beneficio può essere assimilato ad una potenziale riduzione dei costi irrigui da parte delle aziende agricole. Questa consapevolezza è tanto più preziosa, se si considerano le ultime annate agricole, spesso interessate da estati molto calde e fortemente siccitose.

Naturalmente, l'effettuazione dei calcoli riportati, ha richiesto una necessaria dose di approssimazione nella determinazione dei parametri di base, come già osservato in occasione dell'Azione 3,2, per il calcolo dell'incremento di quota di falda Delta H. La stessa ripartizione di tutte le colture irrigue in tre grandi classi è

	potenzialmente migliorabile, tramite nuove sperimentazioni in grado di mettere in relazione altezza di falda e produzione su altre colture. Si pensi ad esempio al vigneto, in passato considerato coltura non irrigua, e alla sua attuale diffusione ed importanza economica. Per quanto riguarda il Piano di lavoro, era stato anche prevista una prima stima dei benefici legati all'innalzamento della falda, di tipo non solo economico – produttivo, ma anche ecologico, come, ad esempio, il contributo al mantenimento di fasce tampone boscate in prossimità dei canali irrigui. In realtà, in base a valutazioni intervenute anche con CNR-Ibimet, si è ritenuto non avere allo stato attuale sufficienti elementi per attribuire, anche in maniera approssimativa, un valore a questo servizio ecosistemico.
Attività ancora da realizzare	Tutte le fasi dell'Azione 3.4 sono state completate.

2.2.1. Personale Azione 3

PERSONALE CER

Cognome e nome	Mansione/ qualifica	Attività svolta nell'azione	Ore	Costo
1	concetto	Realizzazione	214,09	5.564,70
	Ricercatore quadro preposto	Realizzazione	331,75	13.127,14
	Personale di concetto	Realizzazione	252,43	5.262,52
	Impiegato direttivo	Realizzazione	209,22	6.755,29
	Operaio avventizio	Realizzazione	133	1.808,80
			Totale	32.518,45

PERSONALE DICAM

Cognome e nome	Mansione/ qualifica	Attività svolta nell'azione	Ore	Costo
	Professore Ordinario	Realizzazione	50	3.168,50
	Ricercatore	Realizzazione	58	1.838,02
			Totale	5.006,52

PERSONALE CNR-IBIMET

Cognome e nome	Mansione/ qualifica	Attività svolta nell'azione	Ore	Costo	

Ricercatore	Realizzazione	304	10.668,73
		Totale	10.668,73

PERSONALE VISENTINI

Cognome e nome	Mansione/ qualifica	Attività svolta nell'azione	Ore	Costo
	Ricercatore	Realizzazione	84	2.841,72
			Totale	2.841,72

PERSONALE AZ. AGR. CREMONINI

Cognome e nome	Mansione/ qualifica	Attività svolta nell'azione	Ore	Costo
	Tecnico	Realizzazione	76,5	1.209,12
	- d	÷	Totale	1.209,12

2.2.2. Trasferte

CER

Cognome e nome	Descrizione	Costo
	Missione per visita stazioni falda con formule non congruenti e per verifica letture in stazioni falda selezionate per applicazione formula, per installazione strumenti e monitoraggio parametri e per scelta piante, installazione strumenti e monitoraggio parametri	i 884,37
	Missione per visita stazioni falda con formule non congruenti e per verifica letture in stazion falda selezionate per applicazione formula e per installazione strumenti e monitoraggio parametri	i 287,19
	Missione per installazione strumenti e monitoraggio parametri e per scelta piante, installazione strumenti e monitoraggio parametri	4137
	Totale	1.212,88

Nessuna spesa di trasferta sostenuta per il DICAM

Nessuna spesa di trasferta sostenuta per il CNR IBIMET

2.2.4. Spese per materiale durevole e attrezzature

Fornitore	Descrizione dell'attrezzatura	Costo
Ecosearch s.r.l.	Acquisitori dati per misure del livello di falda	1.522,53
	Totale:	1.522,53

2.2.5. Collaborazioni, consulenze, altri servizi

CONSULENZE – SOCIETÀ

Ragione sociale della società di consulenza	Referente	Importo contratto	Attività realizzate / ruolo nel progetto	Costo €
Altavia s.r.l.		7.200,00	Implementazione formule in applicativo Faldanet e test funzionamento - Implementazione modello in applicativo irrinet/Irriframe e test funzionamento	7.200,00
Agromet s.r.l.		rendicontate	Realizzazione formule, analisi con indicatori statistici e validazione stazioni falda	2.000,00
		€ 2.000,00 di cui rendicontate 2.000,00	Collaborazione	2.000,00
Agromet s.r.l.		rendicontate	Realizzazione formule, analisi con indicatori statistici e validazione stazioni falda	392,00
		€ 2.000,00 di cui rendicontate 2.000,00	Collaborazione	2.000,00
Altavia s.r.l.		12.000,00	Implementazione formule in applicativo Faldanet e test funzionamento - Implementazione modello in applicativo irrinet/Irriframe e test funzionamento	12.000,00
Altavia s.r.l.		5.725,00	Implementazione formule in applicativo Faldanet e test funzionamento - Implementazione modello in applicativo irrinet/Irriframe e test funzionamento	5.725,00
F C		€ 3.000,00 di cui rendicontate 3.000,00	Collaborazione	3.000,00

Totale €	34.317,00
	i

2.3 AZIONE 4

2.3.1. Attività e risultati Azione 4

Azione 4	Piano di divulgazione di trasferimento dei risultati e implementazione della rete PEI					
Unità	CER					
aziendale						
responsa						
bile	Et a little a little		C:I	1 11 1		
Descrizio ne attività	E' stata pubblicata un'apposita pagina sul sito web dell'ente capofila, dedicata esclusivamente al piano, ove sono saranno pubblicati i risultati del progetto. Sono stati realizzati due tutoriali: "Posa e lettura dei piezometri, anche mediante l'uso di dispositivi elettronici e sensori" e "Uso di Faldanet". Inoltre sono stati realizzati: - 3 video da utilizzare all'interno dell'informazione televisiva (servizio tg) (RAI 3 TGR maggio 2017; Ottobre 2017; Nettuno TV Marzo 2018). - 3 video da utilizzare all'interno dell'informazione televisiva specialistica o di settore (tipo redazionale) (Telesanterno Maggio 2017; Nettuno TV Agosto 2017, Nettuno TV Marzo 2018) Tutto il materiale audiovisivo è in fase di caricamento sul sito del Consorzio CER, attraverso il canale YouTube dedicato con lo scopo di amplificare il messaggio veicolato dall'intero Piano, aumentandone la ricaduta sia territoriale, sia coinvolgendo categorie di fruitori più avvezzi a questi mezzi di comunicazione assai differenti e più immediati rispetto ai tradizionali manuali cartacei. Sono stati progettati e realizzati n.5 appositi pannelli illustrativi del progetto, uno per ogni sito ed uno in caso di danneggiamento di quelli installati, per permettere una diffusione dell'impegno dei partner e della Regione anche con metodi tradizionali e a livello locale, dando particolare risalto all'impegno concreto e territoriale. Per enfatizzare e diffondere con più chiarezza ed ad un numero più ampio possibile di persone interessate (stakeholder) i risultati ottenuti dal progetto sul risparmio idrico e il miglioramento dell'efficienza delle reti irrigue , è stato realizzato un video con lo scopo di: - illustrare l'effetto benefico della falda sulle colture e istruire l'agricoltore sui benefici per la propria azienda, derivati dall'utilizzo dell'acqua della falda ipodermica da parte delle colture in atto - illustrare l'azione 2 e i risultati ottenuti dalla stessa. Sono stati pubblicati due articoli: Uso sostenibile dell'acqua, il Cer in prima linea					
	Tabella 1 – Descrizione sintetica delle iniziative di divulgazione svolte dal 1 aprile					
	2016 al 31marzo 2019 GO 500	_	svoite da	і т аргііе		
	Titolo	Titolo	Titolo	Titolo		
	(Provincia, data, n.	(Provincia, data, n.	(Provi	(Provi		
	presenze, link portale	presenze, link portale	ncia,	ncia,		

		CRPV)	CRPV)	data, n. presen ze, link portal e CRPV)	data, n. presen ze, link portal e CRPV)
	Incontri tecnici	Metodi di rilievo delle perdite da canale BO 16-10-2018 (?) FALDAIncontro16ott18 BO	L'irrigazione come strumento di lotta alla risalita del cuneo salino nella falda ipodermica RA 17-11-2018 (no) FALDAIncontro17nov18RA		
	Visite guidate	Bilancio idrico territoriale e influsso del riempimento dei canali sulla risposta irrigua FE 17-10-2018 (?) FALDAVisita17ott18FE			
	Pubblica zioni	Uso sostenibile dell'acqua, il CER è in prima linea (Rivista Agricoltura 3/2017) FALDARivistaAgricoltur aMarzo2017	Le nuove frontiere del'acqua a Macfrut (Rivista Agricoltura 4/2017) FALDARivistaAgricolturaM arzoAprile2018		
	registrati ir presso il (n occasione delle diverse CRPV. Le locandine dell	lle locandine prodotte e diffu iniziative riportate in tabella e visite guidate, degli inco i al link incluso nella tabella 1	1, sono d ntri tecn	lisponibili
Grado di raggiungi mento degli obiettivi, scostame nti rispetto al piano di lavoro, criticità evidenziat e	La pubblica del piano. Per velociz	izione dei materiali sarà u	i cella soprastante sono state in processo continuo che pros in onda sarebbe stato oppo ssa in onda.	seguirà ol	tre la fine

Attività	
ancora da	
realizzare	

2.3.2. Personale Azione 4

PERSONALE CER

Cognome e nome	Mansione/ qualifica	Attività svolta nell'azione	Ore	Costo
	Personale di concetto	Realizzazione materiale illustrativo e promozionale - svolgimento attività dimostrativa	30,5	792,04
	Ricercatore Quadro preposto	Realizzazione materiale illustrativo e promozionale - svolgimento attività dimostrativa	21,25	846,25
	•		Totale	1.638,29

Personale CRPV

Cognome e nome	Mansione/ qualifica	Attività svolta nell'azione	Ore	Costo
	Segreteria	Segreteria	4	99,80
	Tecnico	Divulgazione	8	402,80
	Tecnico	Divulgazione	12	301,08
	Tecnico	Divulgazione	8	222,32
			Totale	1.026,00

2.3.3. Trasferte

Nessuna spesa di trasferta prevista per il CER

Nessuna spesa di trasferta sostenuta per il CRPV

2.3.4. Materiale consumabile

Sono state sostenute tutte le spese nella rendicontazione intermedia.

2.3.5. Attività di formazione

CRPV

E' stata sostenuta l'attività di formazione, con il seminario "Installazione di piezometri per il monitoraggio della falda ipodermica, misurazione e interpretazione del dato" – Domanda di sostegno 5005305.

2.3.6. Collaborazioni, consulenze, altri servizi

CONSULENZE - SOCIETÀ

Ragione sociale della società di consulenza	Referente	Importo contratto	Attività realizzate / ruolo nel progetto	Costo €
_		€ 81.000,00 di cui rendicontate 1.200,00	Riprese e montaggio video	1.200,00
_		€ 81.000,00 di cui rendicontate 8.900,00	Riprese e montaggio video	8.900,00
	b	l.	Totale €	10.100,00

3. Criticità incontrate durante la realizzazione dell'attività

Criticità tecnico- scientifiche	NESSUNA
Criticità gestionali (ad es. difficoltà con i fornitori, nel reperimento delle risorse umane, ecc.)	
Criticità finanziarie	NESSUNA

4. Altre informazioni

Molte della attività previste nel progetto sono state svolte con protocolli di comunicazione via web che hanno reso necessario un maggior numero di ore di lavoro d'ufficio per la programmazione. Questo però ha consentito di ridurre il numero di trasferte necessarie per il coordinamento e per la raccolta dei dati in campo.

5. Considerazioni finali

/

Data 27 maggio 2019

IL LEGALE RAPPRESENTANTE

dott. Massimiliano Pederzoli

firmato digitalmente

Piano "Gestione della rete di misura della falda ipodermica in funzione delle precipitazioni e del sostegno dei canali della rete dei Consorzi di Bonifica" – Domanda di sostegno 5005237.

RELAZIONE TECNICA FINALE: ALLEGATI

Azione 3.1: Riorganizzazione della rete di rilievo regionale della falda ipodermica tramite l'utilizzo di formule ARPAE-SIMC.

ALLEGATO 1

NOME	DESCRIZIONE	NOTE
STAZIONE	Sigla identificativa stazione falda	
NR_OBS_DATA	Numero di letture reali di altezza di falda utilizzabili dalla formula ARPAE	
ALPHA	Parametro 1 di calcolo utilizzato all'interno della formula ARPAE	Valore -9999: impossibilità di previsione del livello di falda con la formula sulla specifica stazione
НО	Parametro 2 di calcolo utilizzato all'interno della formula ARPAE	
NR_DAYS	Parametro 3 di calcolo utilizzato all'interno della formula ARPAE	
R2	Coefficiente di determinazione statistica	
RMSE	Errore quadratico medio	
EF	Indice di Efficienza	In Greenwood, 1985. Descritto in All.4
CER_index	Indice CER	Descritto in relazione tecnica

Tabella 1: Metadati tabella "Stazione falda x parametri"

NOME	DESCRIZIONE	Note
STAZIONE	Sigla identificativa stazione falda	
	Classe di attendibilità statistica della	
	previsione del livello di falda operata dalla	Nomenclatura: SW = Superwells; 1
	formula ARPAE per la stazione presa in	= Livello 1; 2 = Livello 2; 3 = Livello
	esame. Livello di attendibilità decrescente	3; Q301 = piezometro sempre
CLASSE	da Superwells a Livello 3	secco

Tabella 2: Metadati tabella "Stazione falda x classi attendibilità"

CLASSE	Osservazioni	R2	RMSE	EF	CER INDEX
Super					
Wells	50 o >	0.66 o >	30 o <	0.45 o >	0.5 o >
Livello 1	50 o >	0.5 o >	40 o <	0.25 o >	0.4 o >
Livello 2	50 o >	0.3 o >	50 o <	0	0.3 o >
Livello 3	Qualunque	Qualunque	Qualunque	Qualunque	Qualunque

Tabella 3: Valori soglia minimi dei parametri statistici per l'accesso a ciascuna classe

Tabella "Stazione falda x parametri"

NAME	NR_OBS_DATA	ALPHA	НО	NR_DAYS	R2	RMSE	EF	CER_index
01FC	209	-1,69	257	650	0,42	27,1	0,23	0,88
01FE	332	-3,52	211,7	430	0,62	36,5	0,45	0,65
01PC	336	-1,42	119,2	140	0,5	20,2	0,18	0,59
01PR	296	-4,17	188,2	430	0,65	46,5	0,53	0,52
01RE	359	-3,66	185,2	260	0,65	43,4	0,4	0,46
02BO	210	-3,82	184,8	730	0,74	33,6	0,65	0,58
02FC	296	-2,52	178,4	280	0,56	34,9	0,24	0,53
02FE	363	-2,51	198,7	250	0,61	30,6	0,11	0,68
02MO	296	-3,49	174,3	570	0,69	37,7	0,27	0,42
02PC	286	-2,27	234,2	480	0,55	39,4	0,51	0,72
02PR	283	-3,19	169,9	590	0,68	37,1	0,57	0,46
02RA	328	-2,24	199	560	0,47	41,8	0,31	0,59
02RE	415	-0,82	91,3	730	0,16	39,2	0,04	0,29
02RN	353	-1,94	50,6	110	0,78	9,9	0,52	0,8
03FE	399	-4,21	156,2	570	0,64	49,8	0,27	0,42
03PC	296	-1,7	188	250	0,55	30,4	0,3	0,6
03PR	158	-3,39	162,2	190	0,5	56,3	0,14	0,3
03RA	414	-3,25	124,7	570	0,85	24,2	0,65	0,59
04BO	165	-3,97	230,5	680	0,61	49,4	0,34	0,5
04FC	263	-3,12	219,4	610	0,54	44,1	0,37	0,59
04FE	251	-2,92	212,7	420	0,71	27,8	0,28	0,66
04PC	304	-1,88	191,7	430	0,37	43,2	0,3	0,49
04PR	332	-4	144,8	240	0,75	41,6	0,44	0,52
04RA	176	-4,31	255,1	720	0,78	27,4	0,54	0,69
04RE	420	-4,02	166,8	380	0,6	49,6	0,35	0,42
05BO	237	-3,26	173,2	230	0,48	47,3	0,08	0,39
05FC	225	-1,52	257,2	180	0,23	34,7	0,14	0,92
05FE	413	-2,21	164,2	390	0,32	37,4	-0,05	0,49
05MO	348	-2,8	164,5	260	0,54	42,5	0,21	0,37
05PC	249	-2,24	172,9	550	0,56	39	0,31	0,44
05RA	396	-2,75	128,1	250	0,74	27,2	0,39	0,52
05RE	355	-3,52	151	230	0,65	40,9	0,21	0,42
06BO	346	-3,41	161,2	620	0,78	36,3	0,53	0,52
06FC	309	-3,1	186,4	260	0,61	41,2	0,34	0,53
06MO	419	-2,19	99	230	0,57	31,6	0,19	0,44
06PC	186	-1,9	204,4	170	0,43	38,2	0,04	0,67
06RE	405	-2,98	157,9	330	0,61	36	0,36	0,46
07BO	222	-2,38	210,7	250	0,27	61,9	-0,04	0,43
07FC	343	-2,2	160,7	220	0,55	31,6	0,23	0,49
07FE	414	-2,34	157,2	670	0,69	26,7	0,51	0,63
07MO	329	-2,28	104	170	0,54	31,7	0,19	0,46
07PC	299	-2,13	197,1	420	0,51	35,8	0,38	0,58

NAME	NR_OBS_DATA	ALPHA	НО	NR_DAYS	R2	RMSE	EF	CER_index
07RA	31	1,33	214,1	730	0,2	43,7	-9999	0,84
07RE	215	-3,65	187	270	0,53	54,9	0,26	0,41
08BO	122	-2,47	167,2	650	0,36	53,6	-0,23	0,33
08FE	359	-2,38	166,4	290	0,47	34,5	0,11	0,49
08PR	21	-3,21	203,3	140	0,43	20,9	-9999	0,67
08RA	17	1,78	267,2	90	0,1	52,2	-9999	0,94
09BO	434	-2,74	135,5	290	0,55	45,1	0,22	0,35
09MO	278	-3,88	209,7	610	0,66	40,8	0,33	0,54
09PR	83	-2,79	205,1	690	0,73	18,6	0,54	0,81
09RA	360	-2,68	190,2	290	0,75	27,8	0,45	0,62
09RE	17	-5,02	292,9	730	0,44	67,6	-9999	0,41
10FC	324	-2,85	174,6	250	0,71	29	0,21	0,59
10FE	392	-3,7	217,2	640	0,73	37,8	0,54	0,56
10MO	368	-2,38	111,4	220	0,63	30,9	0,33	0,51
10PC	61	-3,73	198,5	410	0,57	35,5	0,03	0,61
10PR	0	-9999	-9999	-9999	-9999	-9999	-9999	-9999
10RA	372	-3,46	151,2	680	0,72	36,2	0,52	0,51
10RE	352	-2,67	106	500	0,66	35,6	0,53	0,45
11BO	271	-2,19	114,8	220	0,61	29	0,16	0,52
11FC	282	-2,82	165	230	0,83	21,1	0,49	0,69
11MO	366	-2,2	138,7	250	0,46	40,8	0,17	0,34
11PC	0	-9999	-9999	-9999	-9999	-9999	-9999	-9999
11PR	0	-9999	-9999	-9999	-9999	-9999	-9999	-9999
12BO	201	-3,32	175,1	470	0,53	56	0,25	0,32
12FC	123	-3,73	205,6	320	0,8	25,1	0,61	0,66
12FE	412	-2,85	127,9	200	0,71	26,6	0,25	0,54
12MO	175	-5,38	259,7	600	0,69	41,4	0,44	0,51
12RA	100	-2,24	259,7	730	0,15	49,7	-9999	0,75
12RE	323	-4,33	139,9	210	0,83	32,8	0,34	0,54
12PR	46	-0,66	169	170	0,24	16	-0,41	0,85
13FC	94	-5	227,3	220	0,7	41,5	-9999	0,54
13FE	429	-1,25	108	240	0,5	20,1	0,22	0,55
13MO	461	-3,33	113,3	510	0,58	40,4	0,33	0,39
13RA	385	-1,65	148,5	300	0,41	34,7	0,17	0,5
14BO	370	-1,95	110,4	300	0,66	23,5	0,33	0,55
14FE	421	-1,22	170,4	390	0,33	22,7	0,11	0,64
14MO	161	-3,59	187,8	230	0,49	51,2	0,15	0,36
14RA	399	-2,13	123	240	0,63	27,8	0,3	0,53
14RE	49	-4,91	252,3	720	0,82	28,7	-9999	0,49
15FC	16	-3,01	124,5	730	0,48	38,6	-9999	0,19
15RA	148	-2,79	249,1	660	0,71	23,5	0,51	0,79
15RE	316	-2,26	176,7	300	0,76	21,6	0,5	0,71
16MO	374	-1,2	114,3	220	0,19	41,9	0,01	0,34
16RA	418	-3,18	159,3	340	0,76	28,6	0,49	0,6

NAME N 17MO 17RA 17RE	NR_OBS_DATA 347	-2,56	Н0	NR_DAYS	R2	RMSE	EF	
17RA			85,4	210	0,55	38,3	0,19	CER_index 0,43
		-3,27	149,4	690		30,1		
1/KE	370 76	1	144,5	190	0,78		0,59	0,5 0,43
18FE	408	-4,5			0,77	27,8	0,41	
+		-0,89	80,8	420	0,36	19,7	0,19	0,5
18MO	347	-2,32	156,8	730	0,71	26,2	0,57	0,54
18RA	365	-3,14	148,8	290	0,8	27,4	0,57	0,58
18RE	13	-7,41	214	730	0,94	14,7	-9999	0,77
19BO	714	-3,25	159,4	460	0,71	27,6	0,49	0,59
19FE	295	-1,47	178	380	0,46	22,8	0,15	0,66
19MO	319	-2,12	170,3	660	0,73	23,2	0,51	0,63
19RA	216	-3,34	141,3	410	0,86	20,9	0,72	0,65
19RE	66	-3,95	189,4	460	0,85	23,9	-9999	0,62
20FE	427	-0,84	94	390	0,33	18	0,23	0,45
20MO	374	-2,78	155,4	620	0,41	57,9	0,13	0,26
20RA	130	-2,17	252,2	260	0,55	26,8	-9999	0,85
20RE	50	-3,95	144,2	310	0,67	34,7	-9999	0,46
21BO	191	-2,53	221	260	0,46	49	0,12	0,65
21MO	416	-3,33	136,4	310	0,68	37	0,35	0,41
21RA	264	-1,62	181,2	730	0,51	28,5	0,41	0,63
22MO	305	-5,16	196	330	0,65	48,4	0,42	0,39
23BO	164	-0,78	250,7	640	0,15	38,1	-0,08	0,87
23FE	111	-1,01	134,9	350	0,33	15,4	-0,16	0,65
23RA	99	-2,24	154,9	550	0,81	21,9	0,7	0,71
24FE	411	-0,28	110,9	180	0	37,7	-0,06	0,42
24MO	344	-2,72	98,4	450	0,83	17,6	0,67	0,65
24RA	24	-2,68	179	250	0,47	30,2	-9999	0,46
25BO	364	-2,97	190,3	670	0,79	29,4	0,51	0,63
25FE	301	-2,34	140,3	470	0,62	28,9	0,45	0,52
25MO	420	-2,62	113,3	440	0,65	26,8	0,42	0,47
26FE	250	1,44	113,1	90	0,11	23,4	-0,08	0,5
26MO	172	-2,67	232,2	520	0,7	26,1	0,57	0,78
27BO	347	-3,27	188,8	630	0,76	33,6	0,57	0,6
27FE	187	0,49	112,3	90	0,03	18,1	-0,11	0,54
27MO	307	-3,3	134,6	270	0,67	39,1	0,31	0,43
28BO	167	-3,98	205,9	250	0,81	34,7	0,49	0,56
28FE	344	-1,46	118,2	220	0,5	23,8	0,02	0,6
29FE	274	-1,66	130,2	360	0,76	15,6	0,54	0,66
30MO	50	-3,23	187	280	0,76	33	-2,94	0,7
31FE	293	-0,96	175,3	370	0,27	22,4	0,15	0,65
32BO	105	-1,94	261,1	730	0,3	56,7	0,18	0,65
32FE	270	-1,99	187	690	0,7	25,8	0,61	0,73
33BO	126	-3,02	178	610	0,81	29,7	0,29	0,6
34BO	90	-2,9	196,2	250	0,69	34,6	-9999	0,61
34FE	224	-2,58	196,9	280	0,41	41,2	-0,16	0,43
35BO	59	-3,12	149,3	210	0,95	13,6	-9999	0,73
35FE	175	0,09	61,1	730	0,14	21,7	-0,15	0,57
36FE	58	-3,42	134,8	240	0,86	19,8	-9999	0,47

Tabella "Stazione falda x classi attendibilità"

STAZIONE	CLASSE
01FC	2LVL
01FE	1LVL
01PC	2LVL
01PR	2LVL
01RE	2LVL
02FE	2LVL
02MO	1LVL
02PC	1LVL
02PR	1LVL
02RA	2LVL
02RE	3LVL
02RN	SW
03FE	2LVL
03PC	1LVL
03PR	3LVL
03RA	SW
04BO	2LVL
04FC	2LVL
04FE	1LVL
04PC	2LVL
04PR	2LVL
04RA	SW
04RE	2LVL
05BO	2LVL
05FC	3LVL
05FE	3LVL
05MO	2LVL
05PC	1LVL
05RA	1LVL
05RE	2LVL
06BO	1LVL
06FC	2LVL
06MO	2LVL
06PC	2LVL
06RE	1LVL
07BO	3LVL
07FC	1LVL
07FE	SW
07MO	2LVL
07PC	1LVL
07RA	3LVL
07RE	3LVL
U/KE	3LVL

STAZIONE	CLASSE
08BO	3LVL
08FE	2LVL
08PR	3LVL
08RA	3LVL
09BO	2LVL
09PR	SW
09RA	SW
09RE	3LVL
10FC	1LVL
10FE	1LVL
10MO	1LVL
10PC	2LVL
10RA	1LVL
10RE	1LVL
11BO	2LVL
11FC	SW
11MO	2LVL
11PC	Q301
12BO	3LVL
12FC	SW
12FE	1LVL
12MO	2LVL
12RA	3LVL
12RE	1LVL
12PR	3LVL
13FC	2LVL
13FE	2LVL
13MO	2LVL
13RA	2LVL
14BO	1LVL
14FE	2LVL
14MO	3LVL
14RA	1LVL
14RE	3LVL
15FC	3LVL
15RA	SW
15RE	SW
16MO	3LVL
16RA	SW
17MO	2LVL
17RA	1LVL
17RE	1LVL
L	L

STAZIONE	CLASSE
18FE	2LVL
18MO	SW
18RA	SW
18RE	3LVL
19BO	SW
19RA	SW
19RE	SW
20FE	2LVL
20MO	3LVL
20RA	1LVL
20RE	3LVL
21BO	2LVL
21MO	1LVL
21RA	1LVL
22MO	2LVL
23BO	3LVL
23FE	3LVL
23RA	SW
24FE	3LVL
24MO	SW
24RA	3LVL
25BO	SW
25FE	SW
25MO	1LVL
26FE	3LVL
26MO	SW
27BO	1LVL
27FE	3LVL
27MO	1LVL
28BO	1LVL
28FE	2LVL
30MO	3LVL
31FE	3LVL
32BO	3LVL
32FE	SW
33BO	1LVL
34BO	1LVL
34FE	3LVL
35BO	SW
35FE	3LVL
36FE	1LVL

NOME DESCRIZIONE

STAZIONE	Sigla identificativa stazione falda per ogni provincia
	Classe di attendibilità in relazione all'algoritmo di
	previsione di ARPAE. SW = SuperWells; 1 LVL = siti di primo
CLASSE	livello; Q301 = siti sempre asciutti entro 3 m di profondità
PROV	Provincia in cui ricade la stazione
CONSORZIO	Consorzio di Bonifica incaricato delle letture

Tabella 4: Metadati tabella "Elenco stazioni falda prescelte per l'esecuzione di letture manuali diradate di controllo dell'algoritmo ARPAE".

Tabella "Elenco stazioni falda prescelte per l'esecuzione di letture manuali diradate di controllo dell'algoritmo ARPAE"

ID_SITO	CLASSE	PROV	CONSORZIO
02PC	1LVL	PC	Bonifica Piacenza
03PC	1LVL	PC	Bonifica Piacenza
05PC	1LVL	PC	Bonifica Piacenza
07PC	1LVL	PC	Bonifica Piacenza
11PC	Q301	PC	Bonifica Piacenza
02PR	1LVL	PR	Bonifica Parmense
09PR	SW	PR	Bonifica Parmense
06RE	1LVL	RE	Emilia Centrale
09RE	Q301	RE	Emilia Centrale
10RE	1LVL	RE	Emilia Centrale
12RE	1LVL	RE	Emilia Centrale
15RE	SW	RE	Emilia Centrale
17RE	1LVL	RE	Emilia Centrale
07MO	1LVL	МО	Emilia Centrale
17MO	1LVL	MO	Emilia Centrale
19RE	SW	RE	Terre dei Gonzaga

ID_SITO	CLASSE	PROV	CONSORZIO
02MO	1LVL	МО	Bonifica Burana
06MO	1LVL	МО	Bonifica Burana
10MO	1LVL	МО	Bonifica Burana
18MO	SW	МО	Bonifica Burana
21MO	1LVL	МО	Bonifica Burana
24MO	SW	MO	Bonifica Burana
25MO	1LVL	МО	Bonifica Burana
26MO	SW	МО	Bonifica Burana
27MO	1LVL	МО	Bonifica Burana
06BO	1LVL	ВО	Bonifica Renana
14BO	1LVL	ВО	Bonifica Renana
25BO	SW	ВО	Bonifica Renana
27BO	1LVL	ВО	Bonifica Renana
28BO	1LVL	ВО	Bonifica Renana
33BO	1LVL	ВО	Bonifica Renana
34BO	1LVL	ВО	Bonifica Renana
35BO	SW	ВО	Bonifica Renana
01FE	1LVL	FE	Pianura di Ferrara
04FE	1LVL	FE	Pianura di Ferrara
07FE	SW	FE	Pianura di Ferrara
10FE	1LVL	FE	Pianura di Ferrara
12FE	1LVL	FE	Pianura di Ferrara
25FE	SW	FE	Pianura di Ferrara
32FE	SW	FE	Pianura di Ferrara
36FE	1LVL	FE	Pianura di Ferrara
19BO	SW	ВО	CER
03RA	SW	RA	CER
04RA	SW	RA	CER

ID_SITO	CLASSE	PROV	CONSORZIO
08RA	Q301	RA	CER
10RA	1LVL	RA	CER
15RA	SW	RA	CER
16RA	SW	RA	CER
18RA	SW	RA	CER
19RA	SW	RA	CER
23RA	SW	RA	CER
05RA	1LVL	RA	Bonifica Romagna
09RA	SW	RA	Bonifica Romagna
14RA	1LVL	RA	Bonifica Romagna
17RA	1LVL	RA	Bonifica Romagna
20RA	1LVL	RA	Bonifica Romagna
21RA	1LVL	RA	Bonifica Romagna
02FC	1LVL	FC	Bonifica Romagna
07FC	1LVL	FC	Bonifica Romagna
10FC	1LVL	FC	Bonifica Romagna
11FC	SW	FC	Bonifica Romagna
12FC	SW	FC	Bonifica Romagna
02RN	SW	RN	Bonifica Romagna

Nota: i siti falda 06MO, 07MO e 17MO apparterrebbero di regola al 2 LVL, ma solo per un punto decimale: 0,19 contro 0,20 nel parametro statistico ritenuto meno probante (Efficiency Index + Nash). Si è pertanto ritenuto ammissibile promuoverli al livello superiore.

NOME	DESCRIZIONE	NOTE
STAZIONE	Sigla identificativa stazione falda	
	Classe di attendibilità in relazione	SW = SuperWells; 1 LVL = siti di primo
	all'algoritmo di previsione di	livello; Q301 = siti sempre asciutti entro 3 m
CLASSE	ARPAE.	di profondità
	Distanza in metri del sito falda da	
DISTANZA	un corso d'acqua o canale irriguo	Canali di scolo non considerati
		G = grossolana (sabbie e sabbie franche);
		MG = moderatamente grossolana (franco
		sabbioso); M = media (franco, franco
	Tessitura prevalente del suolo	limoso, limoso); MF = moderatamente fine
	associato alla stazione falda,	(franca argillosa, franca argillosa limosa); F =
TESSITURA	secondo 5 classi generali	fine (argillosa limosa, argillosa).
	Uso del suolo associato alla	
	stazione falda, secondo classi	
USO DEL SUOLO	agronomiche generali.	

Tabella 5: Metadati tabella "Stazioni falda x fattori di disturbo

		DISTANZA		
STAZIONE	CLASSE	(m)	TESSITURA	USO DEL SUOLO
01FC	2LVL	180,3	M	Seminativi avvicendati
01FE	1LVL	109,3	М	frutteti
01PC	2LVL	960,8	MF	prati avvicendati
01PR	2LVL	1241,6	MF	vigneti
01RE	2LVL	106,7	M	vigneti
02FC	1LVL	1058,7	MF	frutteti
02FE	2LVL	120,5	MF	frutteti
02MO	1LVL	528,4	M	frutteti
02PC	1LVL	493,1	F	Seminativi avvicendati
02PR	1LVL	118,3	M	prati avvicendati
02RA	2LVL	119,7	F	colture orticole in pieno campo
02RE	3LVL	90,7	MF	Altri utilizzi, incolti
02RN	SW	304,7	G	colture orticole in pieno campo
03FE	2LVL	276,1	MF	frutteti
03PC	1LVL	148,4	MF	Altri utilizzi, incolti
03PR	3LVL	66,9	MF	prati avvicendati
03RA	SW	253,7	MG	vigneti
04BO	2LVL	761,9	MF	Latifoglie
04FC	2LVL	1579,4	M	frutteti
04FE	1LVL	761,8	M	frutteti

		DISTANZA		
STAZIONE	CLASSE	(m)	TESSITURA	USO DEL SUOLO
04PC	2LVL	61,9	MF	Altri utilizzi, incolti
04PR	2LVL	308,8	MF	Altri utilizzi, incolti
04RA	SW	285,1	M	vigneti
04RE	2LVL	116,9	M	vigneti
05BO	2LVL	84,1	M	frutteti
05FC	3LVL	155,3	M	frutteti
05FE	3LVL	53,3	MF	frutteti
05MO	2LVL	405,9	MF	frutteti
05PC	1LVL	310,4	M	Seminativi avvicendati
05RA	1LVL	125,3	MF	vigneti
05RE	2LVL	15,5	M	vigneti
06BO	1LVL	875,8		Latifoglie
06FC	2LVL	308,6	MF	frutteti
06MO	2LVL	95,3	M	frutteti
06PC	2LVL	147,8	F	Altri utilizzi, incolti
06RE	1LVL	155,8	MF	vigneti
07BO	3LVL	426,7	M	Altri utilizzi, incolti
076C	1LVL		MF	Altri utilizzi, incolti
07FE	SW	541,9	MG	frutteti
		521,6		
07MO	2LVL	75,4		Latifoglie
07PC	1LVL	134,3	F	Seminativi avvicendati
07RA	3LVL	130,5	MF	frutteti
07RE	3LVL	15,4	M	vigneti
08BO	3LVL	78,4	M	Latifoglie
08FE	2LVL	45,4	F	Seminativi avvicendati
08PR	3LVL	605,5	F	Altri utilizzi, incolti
08RA	3LVL	97,3		vigneti
09BO	2LVL	242,9		frutteti
09MO	2LVL	982,7		frutteti
09PR	SW	273,7		Altri utilizzi, incolti
09RA	SW	1444,3		frutteti
09RE	3LVL	266,4	MF	colture orticole in pieno campo
10FC	1LVL	160,7	MF	frutteti
10FE	1LVL	145,6		frutteti
10MO	1LVL	90,4		frutteti
10PC	2LVL	239,0	MF	Altri utilizzi, incolti
10RA	1LVL	148,1	MF	vigneti
10RE	1LVL	43,1	M	vigneti
11BO	2LVL	188,3	M	vigneti
11FC	SW	203,2	MG	frutteti
11MO	2LVL	148,9	MF	frutteti
11PC	Q301	126,8	M	frutteti

		DISTANZA		
STAZIONE	CLASSE	(m)	TESSITURA	USO DEL SUOLO
12BO	3LVL	45,5	MF	vigneti
12FC	SW	1030,4	М	frutteti
12FE	1LVL	417,7	MF	frutteti
12MO	2LVL	160,0	M	frutteti
12PR	3LVL	48,6	F	Altri utilizzi, incolti
12RA	3LVL	788,5	M	frutteti
12RE	1LVL	88,3	MF	vigneti
13FC	2LVL	824,8	MF	frutteti
13FE	2LVL	193,0	M	frutteti
13MO	2LVL	247,6	M	vigneti
13RA	2LVL	395,0	M	frutteti
14BO	1LVL	537,8	М	frutteti
14FE	2LVL	127,2	М	Altri utilizzi, incolti
14MO	3LVL	110,5	MF	frutteti
14RA	1LVL	177,3	M	vigneti
14RE	3LVL	170,4	MF	prati avvicendati
15FC	3LVL	151,6	MF	Altri utilizzi, incolti
15RA	SW	117,8	F	vigneti
15RE	SW	39,6	M	vigneti
16MO	3LVL	84,3	MF	frutteti
16RA	SW	217,0	MG	vigneti
17MO	2LVL	122,3	MF	frutteti
17RA	1LVL	307,4	MG	vigneti
17RE	1LVL	101,8	F	vigneti
18FE	2LVL	477,5	0	Altri utilizzi, incolti
18MO	SW	23,0	F	Seminativi avvicendati
18RA	SW	301,0	MG	frutteti
18RE	3LVL	246,6	MF	vigneti
19BO	SW	506,3	M	Seminativi avvicendati
19FE	2LVL	38,8	F	Latifoglie
19RA	SW	96,1	M	frutteti
19RE	SW	487,9	MF	Altri utilizzi, incolti
20FE	2LVL	365,6	G	colture orticole in pieno campo
20MO	3LVL	114,4	M	vigneti
20RA	1LVL	439,9	M	Altri utilizzi, incolti
20RE	3LVL	53,4	MF	vigneti
21BO	2LVL	473,2	F	Altri utilizzi, incolti
21MO	1LVL	81,8	M	vigneti
21RA	1LVL	173,2	M	Altri utilizzi, incolti
22MO	2LVL	223,8	M	vigneti
23BO	3LVL	79,0	F	vigneti
23FE	3LVL	214,4	M	frutteti
23RA	SW	181,4	MF	Altri utilizzi, incolti
24FE	3LVL	408,6	G	Latifoglie

		DISTANZA		
STAZIONE		(m)	TESSITURA	USO DEL SUOLO
24MO	SW	19,1	F	Altri utilizzi, incolti
24RA	3LVL	21,8	MF	vigneti
25BO	SW	239,3	M	Seminativi avvicendati
25FE	SW	416,7	MF	vigneti
25MO	1LVL	320,5	F	Altri utilizzi, incolti
26FE	3LVL	12,8	G	Seminativi avvicendati
26MO	SW	50,3	М	Altri utilizzi, incolti
27BO	1LVL	751,4	М	Seminativi avvicendati
27FE	3LVL	220,1	G	vigneti
27MO	1LVL	78,6	М	frutteti
28BO	1LVL	113,7	MF	Latifoglie
28FE	2LVL	133,5	М	frutteti
30MO	3LVL	41,4	MF	frutteti
31FE	3LVL	691,2	0	Altri utilizzi, incolti
32BO	3LVL	39,6	F	Latifoglie
32FE	SW	138,8	М	frutteti
33BO	1LVL	364,8	MF	Seminativi avvicendati
34BO	1LVL	73,6	F	frutteti
34FE	3LVL	71,2	F	Altri utilizzi, incolti
35BO	SW	284,1	MF	vigneti
35FE	3LVL	70,3	MF	Altri utilizzi, incolti
36FE	1LVL	313,8	F	frutteti

Grafici di confronto

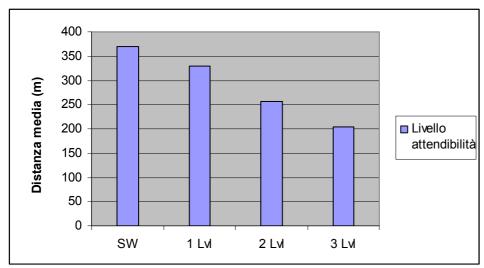


Grafico 1: Livello di attendibilità dei siti falda vs distanza media dai canali

Il grafico mostra come la distanza dai canali irrigui e dai corsi d'acqua naturali sia mediamente maggiore per i siti falda aventi il livello di attendibilità più alto. In sintesi, la formula ARPAE funziona proporzionalmente meglio per i siti posti a maggior distanza da essi, in quanto la quota di

falda è meno o per nulla influenzato dall'acqua apportata per infiltrazione, il che concorda bene con le ipotesi iniziali.

Classe tess.	sw	1 Lvl	2 Lvl	3 Lvl	Totale siti	% SW + 1 Lvl
Fine	4	6	5	5	20	50,0
Grossolana	1		1	3	5	20,0
Media	9	15	17	8	49	49,0
Mod. fine	4	12	14	15	45	35,5
Mod. grossolana	5	1			6	100,0
Organici			1	1	2	0,0
Totale per Livello	23	34	38	32	127	

Tabella 6: Livello di attendibilità dei siti falda vs tessitura dei suoli (escluso dall'elaborazione il sito 11PC, sempre asciutto).

La tabella mostra come, fra i siti falda su suoli a tessitura media o moderatamente grossolana, siano abbastanza frequenti quelli con livelli di attendibilità elevati (Superwells o 1° Livello, in totale il 49% nei suoli a tessitura media e addirittura 100% in quelli a tessitura moderatamente grossolana). Questi suoli hanno una conducibilità idraulica abbastanza elevata, ed è quindi probabile che rispondano più fedelmente agli stessi eventi meteorologici che pilotano l'andamento della formula di previsione ARPAE. Al contrario, suoli a tessitura moderatamente fine o fine, spesso con laminazioni ed orizzonti a tessitura contrastante, possono confinare la falda in settori e a quote non sempre rispondenti a quanto previsto dalla formula e quindi rientrare più facilmente in livelli di attendibilità inferiori. Un capitolo a parte è rappresentato dai siti falda su suoli a tessitura grossolana (essenzialmente su sabbie di piana costiera del Ferrarese e del Ravennate), per i quali la previsione del dato di falda non sembra particolarmente accurata. Essi sono costituiti da batterie con piezometri poco profondi (da 50 a150 cm), causa la difficoltà ad approfondirsi con trivella manuale in queste tessiture; è quindi probabile, in questo caso, che l'assenza di letture oltre tale profondità non permetta il calcolo di parametri formulari adeguati. E' altresì da notare che due di questi siti si trovano in aree di recente bonifica, quindi con falda mantenuta artificialmente e conseguentemente poco correlabile alle previsioni della formula ARPAE.

					Totale	% SW +
Uso generale del suolo	SW	1LVL	2LVL	3LVL	siti	1 Lvl
Altri utilizzi, incolti	5	5	7	8	25	40,0
Orticole in pieno campo	1		2	1	4	25,0
Frutteti	7	12	16	8	43	44,2
Latifoglie		2	3	3	8	25,0
Prati avvicendati		1	1	2	4	25,0
Seminativi avvicendati	3	5	2	1	11	72,7
Vigneti	7	9	7	9	32	50,0
Totale per livello	23	34	38	32	127	

Tabella 7: Livello di attendibilità dei siti falda vs uso generale del suolo

Nella tabella sono incrociati gli usi del suolo descritti al momento della posa della stazione falda con il rispettivo livello di attendibilità statistica. Per ottenere un dato non eccessivamente disperso, molte colture sono state associate in gruppi di carattere generale: ad esempio meleto, pereto, kiwi, susino etc. sono stati accorpati nella classe dei frutteti. La maggior frequenza di siti ad alto grado di attendibilità (Superwells e 1° Livello) si riscontra nei seminativi e nei vigneti: rispettivamente 72,7 e 50%. Questi possono considerarsi valori piuttosto alti, dal momento che Superwells e 1° Livello rappresentano a loro volta poco più del 40% dei siti falda complessivi. Una discreta frequenza è attestata anche per i frutteti (44,2%), mentre per le altre classi di uso non si osservano valori significativi. Il 40% della classe "altri utilizzi, incolti" è difficilmente decifrabile, in quanto raccoglie tutta una serie di differenti situazioni, dal verde attrezzato al coltivo abbandonato.

Il risultato ottenuto è discretamente in linea con l'ipotesi iniziale, ossia che i siti sulle colture meno irrigate (com'è generalmente il caso di seminativi e vigneti) forniscano un dato di falda più attendibile, in quanto meno disturbato dalle acque apportate al terreno. Vi è altresì da osservare come il 44% di siti con alta attendibilità statistica nei frutteti sia un valore comunque considerevole, mentre ci si poteva forse aspettare un risultato più allineato a quello delle orticole o dei prati avvicendati. Anche in questo caso, quindi, come già riscontrato per i parametri tessitura del suolo e distanza dai canali, si osserva un trend allineato con le ipotesi iniziali, anche se non sempre in maniera chiara e lineare.

Si può quindi affermare, con una certa approssimazione, che siti falda in vigneti o seminativi, su suoli tendenzialmente grossolani e lontani da corsi d'acqua/canali di una certa rilevanza, siano i candidati migliori per ottenere previsioni di altezza di falda ipodermica attendibili.

RAPPRESENTAZIONE DEL MODELLING EFFICIENCY INDEX (EF) SECONDO GREENWOOD, 1985

$$EF = 1 - \frac{\sum_{i=1}^{n} (Predicted_{i} - Observed_{i})^{2}}{\sum_{i=1}^{n} (Observed_{i} - AvgObserved)^{2}}$$

where *n* represents the number of data pairs, *i* is the pair index and *AvgObserved* is the average of the observed data. EF provides a simple index of model performance on a relative scale, where EF=1 indicates a perfect fit, EF=0 suggests that the model predictions are no better than a simple average, and a negative value would indicate an eventually poor model performance.

Greenwood, D.J. et al. 1985. *Response of potatoes to N fertilizer*, dynamic model. Plant Soil, 85, 185-203.

IMPLEMENTAZIONE DELL'ALGORITMO DI PREVISIONE DEL DATO DI FALDA ALL'INTERNO DELL'APPLICATIVO WEB FALDANET - SPECIFICHE INFORMATICHE

Creazione nuova tabella StazioneParamsHistory

E' stata creata una nuova tabella dal nome StazioneParamsHistory con i seguenti campi:

ID

StaParAlfa

H₀

NrDays

LastUpdate

UserUpdate

id_Stazioni

che contiene lo storico dei parametri di calcolo utilizzati dall'algoritmo di stima (vedi),

Estensione in DB della entità stazione per la gestione dell'informazione se si tratta di una stazione soggetta a calcolo o meno: [Stazione.IsToCompute] (boolean).

Modifica dell'interfaccia amministrativa di FN in modo che l'amministratore possa inserire e modificare per ciascuna stazione i valori [Stazione.IsToCompute] ed i parametri di stazione.

Figura 1:Scheda stazione

Tramite il link "Parametri di stazione" sulla Scheda stazione è possibile accedere alla Lista dei parametri (fig.2) e da questa all'inserimento o modifica degli stessi (fig. 3). Cliccando su "Nuovi parametri>" i parametri attuali vengono storicizzati e viene aggiunta una riga nella tabella StazioneParamsHistory sotto.

Se invece si utilizza il link "Modifica >" posto nella riga della tabella, i dati vengono modificati SENZA essere storicizzati. Questa funzione può essere utile ad es. se ci si accorge di un errore immediatamente a seguito di un inserimento di nuovi parametri (ma normalmente è da preferire la

prima). L'algoritmo di stima utilizza sempre i parametri storicizzati più recenti (in base al campo LastUpdate).

Figura 2: Lista parametri di stazione

Figura 3: Modifica parametri di stazione

Sulla base della pubblicazione scientifica fornita (Tomei et al 2012), è stato sviluppato ed integrato nel codice del sito Faldanet l'algoritmo della funzione in esso descritta.

La validazione del dato risultante dal calcolo è stata effettuata attraverso controlli definiti in dettaglio assieme al committente. Essi si sono basati sul confronto di congruità, operato su una ventina di stazioni, fra la previsione del dato di falda ottenuta sul sito di test e quanto calcolato da ARPAE tramite il software PRAGA. Essi sono stati inoltre facilitati tramite un'apposita riga di comando on-line, di cui di seguito un esempio:

http://www2.altavianet.it/Faldanet/wservice/CalcolaStimeFaldaStaz?DATA=2016-9-30&IDSTAZ=114

Come da esempio, il comando effettua il calcolo dell'altezza falda sulla stazione con campo ID = 114 nel sito di test www2.altavianet.it/Faldanet.

Gestione del dato di falda calcolato

Allo scopo di gestire il dato calcolato rispetto a quello misurato, è stato aggiunto a tutte le stazioni di falda da calcolare un piezometro fittizio di tipo "ST" (stimato, si veda fig.4). Questa soluzione permette di poter gestire stazioni che abbiano sia dati calcolati che misurati. A livello di interfaccia sono stati evidenziati con colori diversi i dati calcolati (verde) da quelli misurati (rosso) vedi fig. 5. E' inoltre possibile inserire letture di controllo reali anche in stazioni con piezometro fittizio "ST": in questo caso occorre settare il valore del piezometro "ST" come "mancante" ed impostare gli altri piezometri con i valori effettivamente misurati. Anche in questo caso, i valori vengono visualizzati in colore diverso, sia sul grafico che riporta lo storico e le precipitazioni (fig. 6), sia in tabella ((fig. 7).

				121 22	22.72	ru vou lourando	201 100 100	2 0
ID	Tipo	Lunghezza	Diametro	OnLine	Media	Inizio attività	Fine attività	Comandi
1	P1	50	6,3		₩.	09/09/2002	30/11/2013	Modifica >
2	P2	100	6,3	8	2	09/09/2002		Modifica >
3	P3	150	6,3	8	80	09/09/2002		Modifica >
4	P4	280	6,3	8	8	09/09/2002		Modifica >
1331	F4	280	6,3	8	80	08/08/2002		Modifica >
1361	P1	50	6,3	8	€	01/12/2013		Modifica >

Figura 4: Esempio di stazione con piezometro fittizio di tipo ST (Stimato)

ID	Stazione	Stato	Data ultima misura	Misura (cm)		Comandi	
114	01FC Fondo Forniolo	\checkmark	16/11/2018	243	Storico Misure > Grafico Misure >	<u>Lista Eventi ></u>	Scheda Stazione >
9	01FE RAVALLE	\checkmark	16/11/2018	200	Storico Misure > Grafico Misure >	<u>Lista Eventi ></u>	Scheda Stazione >
64	01MO NONANTOLA		08/05/2002	301	Storico Misure > Grafico Misure >	<u>Lista Eventi ></u>	Scheda Stazione >
128	01PC CASCINA GEROLO	\checkmark	03/08/2018	170	Storico Misure > Grafico Misure >	<u>Lista Eventi ></u>	Scheda Stazione >
137	01PR COLOMBAIA	\checkmark	14/08/2018	290	Storico Misure > Grafico Misure >	<u>Lista Eventi ></u>	Scheda Stazione >
73	01RA Podere Martellina	•	15/12/2011	277	Storico Misure > Grafico Misure >	<u>Lista Eventi ></u>	Scheda Stazione >
105	01RE Fondo Bellaria	\checkmark	24/08/2018	271	Storico Misure > Grafico Misure >	<u>Lista Eventi ></u>	Scheda Stazione >

Figura 5: Visualizzazione con colori diversi dei dati misurati e calcolati

Figura 6: Visualizzazione con colori diversi dei dati misurati e calcolati nel grafico

Data	Media	P1 In media <i>⊌</i>	P2 In media <i>⊌</i>	P3 In media <i>⊌</i>	P4 In media <i>⊌</i>	F4 In media	ST In media
17/03/2019	97	30	50	80	163	164	Mancante
16/11/2018	243	non presente	non presente	non presente	non presente	non presente	243
06/11/2018	244	non presente	non presente	non presente	non presente	non presente	244
26/10/2018	249	non presente	non presente	non presente	non presente	non presente	249
16/10/2018	251	non presente	non presente	non presente	non presente	non presente	251
06/10/2018	253	non presente	non presente	non presente	non presente	non presente	253
26/09/2018	256	non presente	non presente	non presente	non presente	non presente	256

Figura 7: Visualizzazione di valore misurato in stazione stimata

Estensione del servizio FnService

Il servizio Windows Server denominato *FnService*, utilizzato dalla piattaforma per l'invio periodico delle comunicazioni e-mail automatizzate ai rilevatori, è stato esteso in modo che, in corrispondenza dell'inizio della decade di rilievo e solo per le stazioni che prevedano l'uso delle stime (Stazione.IsToCompute = 1 e che abbiano il piezometro di tipo "ST"), calcoli e salvi in base dati un rilievo decadale di stazione, secondo la stessa scansione già prevista per le letture manuali.

Data	Media	P1 In media	P2 In media	P3 In media	P4 In media	F4 In media	ST \\ In media
16/11/2018	243	non presente	243				
06/11/2018	244	non presente	244				
26/10/2018	249	non presente	249				
16/10/2018	251	non presente	251				
06/10/2018	253	non presente	253				
26/09/2018	256	non presente	256				
16/09/2018	255	non presente	255				
06/09/2018	254	non presente	254				
02/08/2018	250	Asciutto	Asciutto	Asciutto	250	250	non present
12/07/2018	240	Asciutto	Asciutto	Asciutto	240	240	non present

Figura 8: Colonna con misure calcolate nella visualizzazione dello storico misure

Nella visualizzazione dello storico misure, è stata aggiunta una colonna relativa all'eventuale piezometro di tipo "ST" che si va ad aggiungere a quelle relative alle misure dei piezometri effettivi (fig.8) e che, nel caso di misure calcolate, riportano la dicitura "non presente".

Azione 3.2: Determinazione del contributo dei canali irrigui alla falda ipodermica.

ALLEGATO 6

NOME	DESCRIZIONE
Fase	Sigla fase e titolo come risulta nel Piano; descrizione subfasi (a), (b), (d) etc.
Strumenti	Principali strumenti previsti nell'esecuzione della sub-fase
Note (+ anno)	Note relative alle attività svolte nell'anno
Periodo	Periodo in cui è prevista l'esecuzione della fase
Check	ok = subfase eseguita; ok? = subfase eseguita in parte; no = subfase da eseguire
Data 123	Date e località in cui sono state effettuate le principali operazioni afferenti alla subfase

Tabella 8: Metadati Check List di campagna per Azione 3.2 (aggiornamento ottobre 2018)

Fase 2a Allestimento di								
nuovi siti di monitoraggio	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
a) sistemazione e georefer. tramite GPS di 6 piezometri in PVC di 300 cm, in 2 allineamenti da 3 strumenti (distanze previste 25, 75 e 150 m).	piezometri + GPS	tutti posizionati; risolti problemi di interramento con tubo interno e geotessile; già ricevuti tutti i grigliati da IGM	Eseguita anche quotatura di precisione con GPS (± 5 cm)	feb - mar 17	ОК	FE: 10/05/16 e 07/12/2016 (tubi 5 cm e diver)	MO: 08/06/16 e 05/12/2016 (tubi 5 cm e diver)	FE GPS V. Gaffaro 17/03/2017; MO Torbido 4/5/17
b) In uno dei 2 allineamenti di ciascun sito sistemazione di 2 Mini-diver, calati all'interno del piezometro più vicino e più lontano dal canale	4 Diver	arrivati il 02/09/16 e posizionati a dicembre		aprile - giugno 16	OK	07/12/16 FE	05/12/16 MO	
c) misura di precisione di sezione e contorno bagnato di ciascun canale con rilievi eseguiti con apposita strumentazione. Misura di 2 sezioni trasversali significative per il calcolo del contorno bagnato.	GPS precisione	previsti a gen - feb 2017,	Già ricevuti tutti i grigliati da IGM; fatto 2 sez Beccaccino e 2 Torbido	feb - mar 17	ок		FE GPS Beccaccino 17/03/2017	MO Torbido 4/5/17
x) Quotatura GPS vecchi siti PIA EST e STIOLO (OPZIONALE NON PREVISTO IN PROGETTO)	GPS Trimble	lo fa Consorzio Emilia Centrale	Fatto tutto Stiolo (3 sez + 26 piezo); a metà Pia Est; ricevuti risultati da Emilia Centrale	gennaio - mar 2017	OK	26/01/2017		

Fase 2b Acquisizione dati dai nuovi siti di monitoraggio	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
d) Letture manuali a cadenza quindicinale con appositi strumenti di misura in tutti i piezometri	flessometro	Letture seguite da Aziende agricole	finite le letture a gennaio 2019; si verifica internamente l'invio dei dati	luglio 2016 - dicembre 2018	ок	da 05/07/16 MO e da 22/06/16 FE		
e) Ogni tre mesi circa scarico dati Diver	lettore + pc portatile		Nel 2018 entrambi Diver rotti a Valle Gaffaro e Diver su P15 a Panzano; provvisoriamente inseriti nuovo Diver R9398 ed HD Diver BM219; richiesta e ottenuta sostituzione strumenti da ditta Ecosearch	luglio 2016 - dicembre 2018	OK?	MO; 13/08/2018	FE 01/06/2018	MO 14/01/2019; FE 17/01/2019
f1) lettura tirante idraulico con la stessa cadenza delle letture di falda ipodermica attraverso l'idrometro precedentemente posizionato	idrometro	scelto punto sud sul Torbido	continuano le letture dai risp Consorzi; si verifica internamente l'invio dei dati	luglio 2016 - dicembre 2018	ок	da 12/07/16 FE	da 18/08/2016 MO	
f2) Letture di portata nei 2 canali 2 volte x stagione irrigua	mulinello idrom. SIAP Me4001 e/o RiverSurveyor	mulinello su canali piccoli con poca velocità	Canale Beccaccino troppo lento per le letture di portata: i dati si integrano con misure su Ramedello (canale di Az 3)	luglio - settembre 2018	ок	31/05/18 Cond.Volano 01/06/18 Torbido e Ramedello	04/07/18 Ramedello	01/08/18 Cond.Volano 13/08/18 Torbido
g) Rilievi della salinità in tutti i piezometri posizionati presso lo Scolo Beccaccino e con la stessa scansione delle letture manuali, rilievo conducibilità elettrica dell'acqua di falda e del canale	conduttimetro portatile	Rilievi contemporanei a livello falda	Letture salinità integrate con strumenti del Servizio Geologico, Sismico e dei Suoli; previsti in funzione per tutto il 2019	luglio 2016 - dicembre 2018	ок	da 22/06/16 a FE	Sensori SGSS in lettura da aprile 2017	
Fase 2b Acquisizione dati	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3

dai nuovi siti di monitoraggio							
j) prove infiltrometriche sul fondo canale del sito Torbido (da valutare cosa fare sul sito Beccaccino) e dei vecchi siti PIA EST e STIOLO; canali asciutti e in acqua (OPZIONALE NON PREVISTO IN PROGETTO)	doppio anello; half-barrel	non sono possibill misure con metodo half- barrel	Effettuate infiltrometrie Stiolo e Pia Est; non effettuate altre attività nel 2018	gennaio - mar 2017	ок		
k) prove infiltrometriche sul suolo dei vecchi siti PIA EST e STIOLO (OPZIONALE NON PREVISTO IN PROGETTO)	Mini-disk e	protocollo dei rilievi in bozza	Effettuate infiltrometrie Stiolo; Pia Est a marzo. non effettuate altre attività nel 2018	gennaio - mar 2017	ок		
I DEIL ALIDER-DOIE	Bailer e Diver 30 secondi	documento Auger Hole method	effettuato in canali Pia e Stiolo; non effettuate altre attività nel 2018	gennaio - mar 2017	ОК		

Fase 2c Elaborazione dati	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
Grafici dell'andamento nel tempo del livello di falda nei piezometri. IDW, portate dei canali durante il periodo irriguo, variazioni di salinità	Software GIS	Letture seguite da aziende agricole		luglio 2016 - dicembre 2018		da 05/07/16 MO e da 22/06/16 FE		

Fase 2d Modellazione numerica interazione canali e falda	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
a) acquisizione da parte di DICAM di dati specifici provenienti dai siti di monitoraggio, con diversità di condizioni pedologiche, idrologiche ed idrauliche	Programma	Attività DICAM preliminare	Inviati al DICAM set di dati concernenti precedenti siti-studio: Pia Est e Stiolo.	luglio 2016 - ottobre 2017	ок	invio dati Stiolo 18/05/2017: riunione effettuata 12/07/17		
b) simulazione del flusso di acqua in mezzi poroso in condizioni di sature ed insature. Tramite modello fisico-matematico	Programma VS2DI	Si veda allegato 10 DICAM in Relazione tecnica intermedia;	Altri grafici di andamento della falda consegnati a gennaio 2018	novembre 2017- febbraio 2018	ок	Ricevuto modello numerico il 02/03/2018		
c) calibrazione e validazione del modello concettuale, rendendolo applicabile per tutte le condizioni ritenute rappresentative a scala regionale. Verificare congruità delle classi di canale proposte	processore programma VS2DI	Regressioni lineari dati simulati/dati reali per valutare l'attendibilità	Effettuata nel 2018 con supporto DICAM	maggio 2018 - dicembre 2018	ок	consegna gennaio 2019		

Fase 2e Estensione del modello alla rete di consegna irrigua del territorio regionale	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
a) acquisizione della copertura geografica relativa alla rete consorziale nell'intero ambito regionale; selezione dei tratti		shape acquisito internamente da CER;	Consegnato shp anche a ARPAE per elaborazioni sulla fase 1b	gennaio- marzo 2018	ок	29/08/2017		
b) classificazione secondo le dimensioni e le tipologie di suolo attraversate; associazione dei valori dei parametri identif. in fase 2d.	Software GIS, linguaggio	Effettuata nel 2018 con supporto DICAM	Effettuato incrocio con Carta regionale della conducibilità idraulica dei suoli	aprile- dicembre 2018	ок	strato dei canali con nuovi parametri a settembre 2018		
c) riproduzione di uno strato poligonale tramite buffering, con fascia di pertinenza per ogni tratto di canale classificato		prevista per il 2018 con supporto DICAM	Creato shapefile finale "CanaliWGS84_onlyIrrig ui_InputMODELLO_V10 _BUFFER_UTM32.shp"	aprile- dicembre 2018	ок	strato finale a gennaio 2019		

Fase 2f Implementazione in Irrinet/irriframe	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
a) sovrapposizione allo strato della Carta EDF dei poligoni delle fasce di pertinenza realizzato nella precedente fase 2e	ArcGIS, nuovi	fase esaminata in incontro preliminare ALTAVIA; prevista per il 2018; Verificare consegna strato digitale ("buffer")	Acquisito shapefile in FaldaNet per il calcolo del contributo di falda da associare a Irrinet	luglio 2017 - dicembre 2018	ок	riunione 06/09/2017	riunione 06/09/2018	
b) Scrittura codice per rendere disponibile il dato modificato nel servizio Irrinet/Irriframe per il calcolo del bilancio idrico,	Software	fase esaminata in incontro preliminare con SH; prevista per il 2019	Associata l'informazione "Delta H canale" (contributo di falda) al plot (coordinate appezzamento) di Irrinet	settembre 2017 - dicembre 2018	ОК	riunione 06/09/2017	riunione 06/09/2018	Ricevuta relazione Altavia a febbraio 2019

DESCRIZIONE DEI SUOLI

Nella successiva tabella sono riportati i codici delle 12 trivellate eseguite nel 2016 per la posa dei piezometri nei due siti - studio di Panzano e Valle Gaffaro. Ad essi sono associate:

- Coordinate dei punti X e Y in UTM32 ETRS89;
- Unità Tipologica di Suolo (UTS) secondo il Catalogo dei Suoli della Regione Emilia-Romagna¹ e relativa sigla cartografica.

Le schede pedologiche sono state compilate secondo i codici e gli standard descritti nel Manuale di campagna ed. 2002 del Servizio Geologico, Sismico e dei Suoli regionale.

Questo l'elenco:

Codice Trivellata	Х	Y	UTS	Sito
E7609T0001	755238	4969336	CERBA sabbioso fini franchi (CER2)	Valle Gaffaro
E7609T0002	755197	4969325	CERBA sabbioso fini franchi (CER2)	Valle Gaffaro
E7609T0003	755160	4969312	CERBA sabbioso fini franchi (CER2)	Valle Gaffaro
E7609T0004	755347	4968989	CERBA sabbioso fini franchi (CER2)	Valle Gaffaro
E7609T0005	755308	4968978	BOSCHETTO franchi (BTT1)	Valle Gaffaro
E7609T0006	755268	4968967	CERBA sabbioso fini franchi (CER2)	Valle Gaffaro
E7609T0013	661982	4942717	SAN GIORGIO franco argillosi (SGR4)	Panzano
E7609T0014	662030	4942691	CATALDI franco argilloso limosi, 0.2-1% pendenti (CTL4)	Panzano
E7609T0015	662096	4942673	SAN GIORGIO franco argillosi (SGR4)	Panzano
E7609T0016	662020	4942805	MEDICINA franco argilloso limosi, 0.2-1% pendenti, a scolo naturale (MDC2)	Panzano
E7609T0017	662069	4942784	CATALDI franco argilloso limosi, 0.2-1% pendenti (CTL4)	Panzano
E7609T0018	662138	4942777	SAN GIORGIO franco argillosi (SGR4)	Panzano

¹ Reperibile in http://geo.regione.emilia-romagna.it/cartpedo/catalogo_tipi_suolo.jsp

LETTURE MANUALI DELLA PROFONDITA' DI FALDA NEI PIEZOMETRI DEI DUE SITI STUDIO PANZANO E VALLE GAFFARO

Sono di seguito presentate le tabelle che mostrano la quota falda rilevata manualmente in ciascuno dei piezometri posizionati nei due siti di Panzano e Valle Gaffaro. La profondità è espressa in cm dal piano campagna. I valori si ritengono più attendibili a partire da dicembre 2016, quando nei piezometri è stato posizionato il tessuto/non tessuto per evitare intasamenti e vi sono stati collocati i lettori in continuo (Diver), che hanno permesso un controllo incrociato dei dati rilevati. A causa di diversi fattori, in alcuni casi (per es. 22 giugno 2018) non sono stati letti tutti i piezometri.

SITO PANZANO

Data	P13	P14	P15	P16	P17	P18
06/07/2016	174	228	230	241	301	301
22/07/2016	181	236	214	256	254	301
02/08/2016	186	301	301	301	301	301
18/08/2016	203	301	301	301	301	301
29/08/2016	204	301	301	301	301	301
15/09/2016	301	301	301	301	301	301
28/09/2016	301	301	301	301	301	301
06/10/2016	301	301	301	301	301	301
12/10/2016	301	301	301	301	301	301
31/10/2016	232	301	301	301	301	301
16/11/2016	222	301	301	301	301	301
29/11/2016	211	283	244	301	301	301
16/12/2016	237	279	286	301	301	301
19/12/2016	228	301	280	301	301	301
02/01/2017	203	297	271	280	301	301
17/01/2017	204	296	268	280	301	301
01/02/2017	216	301	268	301	301	301
08/02/2017	195	182	187	258	301	272
16/02/2017	166	205	179	265	301	272
28/02/2017	162	205	187	265	301	272
15/03/2017	154	205	208	263	301	301
30/03/2017	154	205	206	256	301	301
20/04/2017	132	191	175	246	301	274
02/05/2017	136	191	175	246	301	274
04/05/2017	142	183	178	235	301	267
17/05/2017	108	156	140	222	301	215
30/05/2017	152	197	193	258	301	250
14/06/2017	184	228	228	284	301	270
28/06/2017	201	264	237	282	301	274
18/07/2017	242	287	285	282	301	265
31/07/2017	259	298	301	301	301	274
21/08/2017	286	301	301	301	301	301
04/09/2017	294	301	301	301	301	301
03/10/2017	253	301	301	301	301	301

Data	P13	P14	P15	P16	P17	P18
03/11/2017	216	301	301	301	301	301
16/11/2017	192	301	301	301	301	301
30/11/2017	188	301	301	301	301	301
13/12/2017	188	301	301	301	301	301
03/01/2018	184	301	301	301	301	301
15/01/2018	172	301	301	301	301	301
30/01/2018	186	301	301	301	301	301
16/02/2018	114	301	268	301	301	301
26/02/2018	34	128	75	123	301	141
15/03/2018	24	41	40	43	301	78
30/03/2018	47	56	57	68	102	77
17/04/2018	62	78	80	102	122	111
02/05/2018	70	106	112	114	137	138
15/05/2018	74	121	131	123	148	153
31/05/2018	64	136	151	122	193	197
22/06/2018	98		158			
26/06/2018	122	160	185	168	252	256
16/07/2018	148	252	238	198	301	301
07/08/2018	162	277	291	266	301	301
27/08/2018	162	294	301	281	301	301
17/09/2018	183	301	301	278	301	301
27/09/2018	202	301	301	281	301	301
16/10/2018	214	301	301	301	301	301
30/10/2018	214	301	301	301	301	301
16/11/2018	199	298	301	301	301	301
28/11/2018	173	294	297	301	301	301

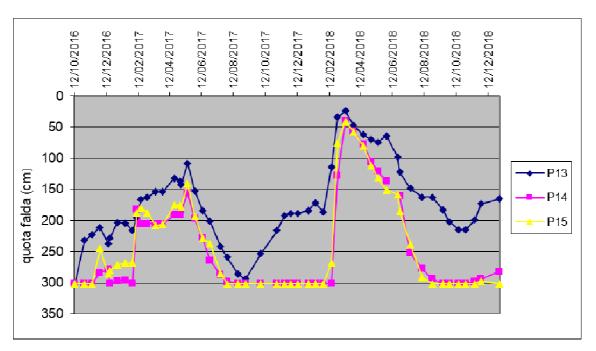


Grafico 2: andamento del livello di falda nell'allineamento di piezometri P13-P14-P15 del sito di Panzano e secondo i rilievi manuali. Si noti la prevalenza del livello di falda nel P13, posto a 25 m dal canal Torbido, rispetto agli altri due.

SITO VALLE GAFFARO

Nel presente sito, contestualmente al livello di falda, è stata anche rilevata manualmente la conducibilità elettrica (espressa in μ S/cm), tramite apposito strumento calato all'interno del piezometro. Inoltre, quando possibile, si è effettuata anche la lettura della conducibilità elettrica delle acque nel vicino canale Beccaccino. A causa della limitata profondità raggiunta dai piezometri (circa 150 cm), mancano rilievi di falda soprattutto nel periodo invernale, poiché quest'ultima si trova sotto tale profondità, mancando il contributo per infiltrazione da parte dell'acqua immessa dal locale Consorzio di Bonifica.

	1		P2		Р3		P4		P5		P6		Beccaccino	
Data	Cond	Prof	Cond.	Prof.	Cond	Prof.	Cond.	Prof.	Cond.	Prof.	Cond	Prof	Idrom.	Cond.
12/07/16	1902	51	2360	44	1572	51	1441	62	1300	71	1239	69	50	1163
02/08/16	1930	65	2380	64	1697	74	1375	72	1305	75	1308	73	51	1527
11/08/16	1461	60	1612	69	1471	61	1424	85	1375	83	1293	85	45	1418
24/08/16	1965	66	2052	52	1944	72	1623	66	1644	70	1463	74	58	1678
01/09/16	1616	58	1986	49	1906	61	1720	63	1720	66	1612	71	48	1812
20/09/16	1942	63	2460	61	2060	67	1482	85	1791	74	1668	73	102	2700
04/10/16	2020	88	2380	88	1940	97	1456	110	1741	115	789	117	81	2440
18/10/16	1824	93	1921	91	2010	104	1519	110	1740	110	1418	112	110	2870
03/11/16	1882	110	2030	110			1476	135					115	3610
22/11/16	1725	116	2630	113			1620	136	1801				117	4050
07/12/16	1801	118	1860	111			1501	138	1712		1601	109	121	3700
10/01/17	1706	117	1709	112	2018	111	1406	130	1814	121	1720	110	126	4100
09/02/17	1740	114	2100	118	1790	117	1450	148						
10/04/17	1954	62	1816	56	1910	59	2400	78	2860	80	3130	80	70	2570
26/04/17	2010	64	1918	68	2220	64	2560	80	2620	80	2980	78	72	2330
22/05/17	1908	70	1758	70	2010	70	2300	80	2330	80	2360	80	62	2110
01/06/17	2010	67	1750	70	1860	69	2100	68	1975	70	2100	68	55	1612
23/06/17	1979	71	1613	76	1992	74	2200	71	2090	76	2200	71	58	1980
13/07/17	1567	60	1902	80	2060	50	1660	73	2000	80	2200	80	54	1780
09/08/17	1740	40	1892	38	1933	45	1580	50	1840	56	2000	50	38	1965
30/08/17	1791	70	1613	60	1992	74	2200	71	2090	76	2200	70	58	1980
14/09/17	1620	82	1818	63	2015	65	2100	107	1910	107	1903	106	64	2020
05/10/17	1203	98	1903	98	1782	98	1610	118	1664	118	1707	118	92	2940
15/11/17	1417	78	1583	70	1785	74	1440	110	1601	115	2090	125		
02/05/18	2300	63	1570	63	1410	63	2670	67	2550	67	2520	72	50	1345
18/05/18	1903	61	1874	66	1512	68	1860	70	2130	70	2020	68	46	1010
28/05/18	2050	64	1944	68	1880	67	1910	70	2090	72	2120	71	50	1090
18/06/18	1916	64	1270	70	770	67	2370	92	1690	83		120	67	1952
04/07/18	1940	52	1352	44	1071	52	2034	72	1647	66	2030	62	46	1560
31/07/18	1910	65	1315	65	1046	65	2190	95	1850	100	1920	100		
13/08/18	1900	98	1980	96	1900	96	1950	95	1730	95	2010	95	50	1810
03/10/18	1810	85	1900	87	1980	88	1850	88	1980	85	1870	86	58	1660

GRAFICI DELL'ANDAMENTO DEL LIVELLO DI FALDA RILEVATA DAI DIVER

Introduzione

Sono di seguito rappresentati quattro grafici, che mostrano le oscillazioni giornaliere del livello di falda registrate dagli strumenti di lettura in continuo Diver all'interno dei piezometri ubicati nelle aziende monitorate nell'ambito del Piano. In ogni grafico sono confrontate le curve riscontrate nei due Diver posizionati in ogni appezzamento. Più precisamente:

- Sito Valle Gaffaro (FE): Diver nel piezometro P4 (a 25 m dal canale Beccaccino) e nel piezometro P6 (a 150 m dallo stesso canale). Solo in questo sito i piezometri hanno la lunghezza di 150 cm, in luogo dei consueti 300;
- Sito La Pomposa (FE): Diver nel piezometro P10 (a 25 m dal Po di Volano) e nel piezometro P12 (a 150 m dallo stesso corso d'acqua);
- Sito Panzano (MO): Diver nel piezometro P13 (a 25 m dal canal Torbido) e nel piezometro P15 (a 150 m dallo stesso canale);
- Sito S. Felice s. P. (MO): Diver nel piezometro P22 (a 25 m dal canale Ramedello) e nel piezometro P24 (a 150 m dallo stesso canale).

Figura 9: Scarico dati dal Diver

Modalità di rappresentazione

Ogni grafico mostra, nella parte alta, la scala temporale entro la quale sono stati effettuati i rilevi. La scala verticale a sinistra definisce la quota di falda in cm sotto al piano campagna (p.c.) descritta dalle due curve. La scala verticale a destra, invece, i mm di pioggia misurati nel periodo all'interno dei quadranti meteo ERG5 (banca dati ARPAE) e rappresentati dalle frecce azzurre verticali nella parte inferiore. In legenda, ai colori delle curve sono associati i numeri dei piezometri in cui sono collocati i Diver.

Grafico 3: Confronto fra le due curve descritte dall'andamento del livello di falda nei due piezometri P4 e P6 collocati nell'appezzamento del sito di Valle Gaffaro.

Note al grafico: La gestione irrigua dell'appezzamento, coltivato ad asparagi, è effettuata tramite subirrigazione, apportando acqua a fossetti laterali su suoli a tessitura grossolana (sabbie litorali), tramite una canaletta in cemento posta a quote superiori. Le curve sono registrate fino ai primi di gennaio 2018, quando si verifica quasi contemporaneamente la rottura di entrambi i Diver; per questioni logistiche la loro sostituzione avviene, e solo parzialmente (un solo nuovo Diver nel P4), a partire da agosto 2018. La sequenza di letture è quindi limitata al 2017: in questo periodo, i piezometri non presentano al loro interno acqua di falda fino all' 1 aprile (inizio del periodo irriguo). A partire da tal momento, l'acqua, immessa con la tecnica sopra descritta, contribuisce ad innalzare artificialmente la falda fino a circa 60-80 cm dal p.c, e, di conseguenza, a fornire l'adeguato contributo irriguo alle radici delle piante. La discesa autunnale della falda è più graduale ed è conseguente all'arresto degli apporti idrici a fine settembre. Le oscillazioni osservate nelle due curve procedono in maniera pressoché identica in entrambi i piezometri, e sono abbastanza ben correlate nel periodo irriguo agli eventi piovosi descritti dalla rete meteo ERG5.

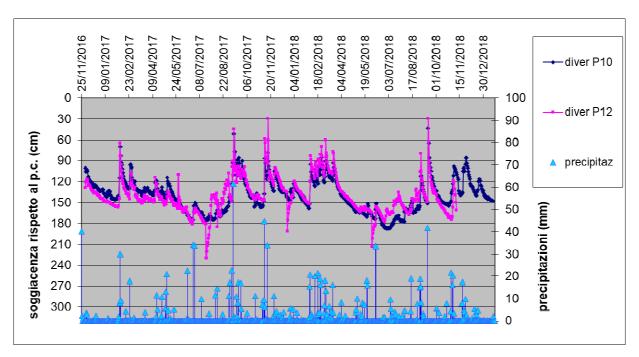


Grafico 4: Confronto fra le due curve descritte dall'andamento del livello di falda nei due piezometri P10 e P12 collocati nell'appezzamento del sito de La Pomposa.

Note al grafico: Nel caso del sito de La Pomposa, l'appezzamento è coltivato a pereto con irrigazione a goccia, tramite acque a bassa salinità (generalmente < 800 microsiemens/cm) prelevate dal vicino Condotto Volano, canale gestito dal Consorzio di Bonifica della Pianura di Ferrara. L'irrigazione consente anche di diluire superficialmente la salinità della falda ipodermica, che può giungere anche a valori superiori a 6000 μS/cm.

Come nel precedente grafico, le due curve procedono praticamente appaiate, con oscillazioni più evidenti legate ai locali eventi piovosi. Il 9 novembre 2018 si verifica la rottura del Diver situato nel piezometro P12 e da questo momento non sono più registrate letture. Sempre nella curva del P12 sono osservabili alcune anomalie; i tre rapidi abbassamenti verificatisi il 19 luglio 2017, il 22 dicembre 2017 e l'1 giugno 2018, sono connessi all'estrazione di campioni di acqua di falda nei piezometri, per analisi della speciazione ionica in laboratorio. Si nota che tali prelievi hanno interessato anche il P10, il quale però ha ripristinato la soggiacenza originale nelle 24 ore (in luogo del 7 – 8 giorni necessari al P12). Questo fenomeno potrebbe essere correlato sia alla diversa permeabilità nei due suoli che ospitano i piezometri (suoli franchi nel P10, suoli franco argilloso limosi nel P12), sia ad una maggior pressione idrostatica nel P10, conseguente alla sua prossimità al Po di Volano. Ancora il 28 maggio 2017 si osserva nel P12 una rapida risalita di circa 50 cm del livello di falda ed un'altrettanto rapida discesa: quest'ultima è però forse in relazione ad un'intensa irrigazione convogliatasi, tramite vie di discontinuità del terreno, all'interno del piezometro.

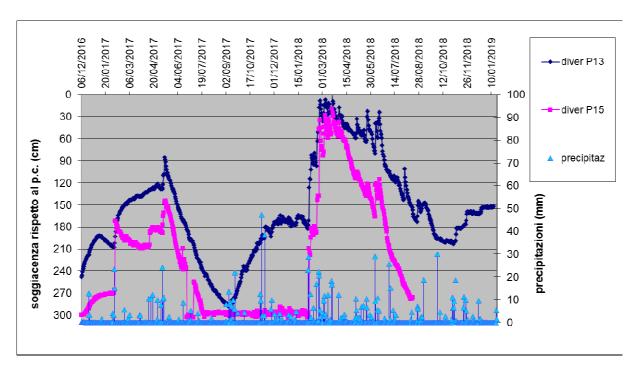


Grafico 5: Confronto fra le due curve descritte dall'andamento del livello di falda nei due piezometri P13 e P15 collocati nell'appezzamento del sito di Panzano.

Note al grafico: Nel sito di Panzano, i piezometri sono collocati all'interno di un vigneto, che può essere all'occorrenza irrigato a goccia e posto in prossimità del canal Torbido, il quale, seppur arginato, possiede un letto a quote leggermente inferiori rispetto al p.c. L'andamento delle curve, pur nel breve periodo esaminato, pare seguire quello delle precipitazioni, con un massimo in corrispondenza del 10 maggio 2017 e poi una graduale discesa connessa al periodo siccitoso, parzialmente interrotto col gruppo di precipitazioni verificatesi ad inizio settembre. L'interruzione nelle letture del Diver sul P15, dal 21 giugno al 3 luglio è dovuta al prelievo dello strumento per verifiche, ma l'assenza non pregiudica la lettura della curva nel suo complesso. Più grave la rottura dello strumento avvenuta Il 16 agosto 2018, con la si interrompono le letture nel P15. Le letture manuali effettuate nel rimanente periodo attestano comunque la permanenza della falda sotto i 300 cm.

Dal confronto fra le curve, si osserva che livello di falda nel P15, posto a 150 m dal Torbido, sia quasi sempre inferiore (in media di circa 40 cm nel periodo irriguo aprile – settembre) rispetto a quello del P13, posto a 25 m dallo stesso canale. In realtà la differenza potrebbe essere anche maggiore, tenendo conto del fatto che nel P15, dal 22 luglio la falda scende sotto la profondità di rilievo del piezometro (3 m), e non è di fatto più misurabile. Nel 2018 la risalita di falda è maggiore, in virtù delle maggiori precipitazioni, giungendo a marzo ad una soggiacenza fin quasi a livello del p.c. in entrambi i piezometri.

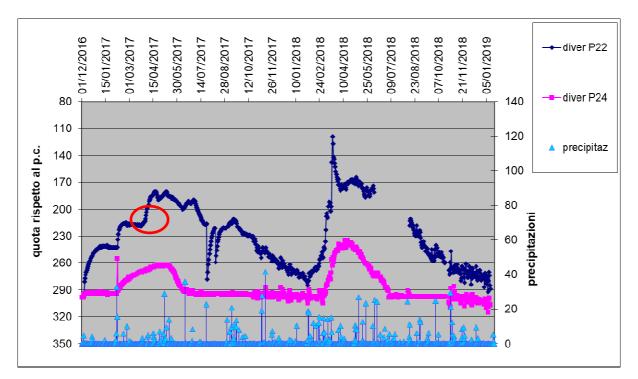


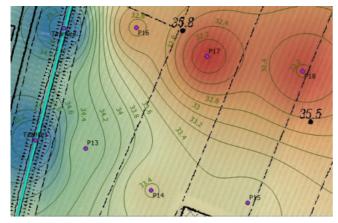
Grafico 6: Confronto fra le due curve descritte dall'andamento del livello di falda nei due piezometri P22 e P24 collocati nell'appezzamento del sito di S. Felice s. P.

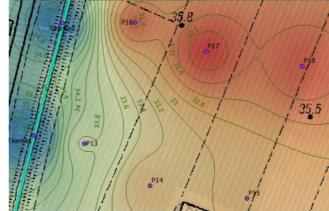
Note al grafico: In quest'ultimo sito, i piezometri si trovano in un pereto, irrigato a goccia e posto in prossimità del canale Ramedello. Le due anomalie osservate nella curva del P22 il 25 luglio ed il 10 agosto 2017 sono causate, in analogia a quanto già descritto per Pomposa, da prelievi di acqua tramite bailer per la misura della conducibilità elettrica. A prescindere da queste, è molto evidente la differenza di quota di falda fra il P22, posto a 25 m dal canale, ed il P24, situato a 150 m. Mediamente la differenza si assesta attorno agli 80 cm, tenendo sempre conto del fatto che dall'1 luglio 2017 la falda nel P24 non è più rilevabile dal piezometro e può quindi situarsi a quote ancora inferiori. Non sempre le risalite osservate nella curva di falda del P22 sembrano connesse alle precipitazioni: in particolare, quella verificatesi a fine marzo 2017, con un risalto di circa 30 cm (circoletto rosso), potrebbe essere causata dall'influenza per infiltrazione delle acque provenienti dal Ramedello invasato. Il più piovoso 2018 vede una maggior risalita media della falda in entrambi i piezometri, anche se per il P24 la risalita è di breve durata e termina ai primi di luglio. Per quanto riguarda infine il P22, un ulteriore malfunzionamento di un Diver, ha determinato un'interruzione delle letture dall' 8 giugno al 12 agosto.

RAPPRESENTAZIONI SPAZIALI TRAMITE IL METODO IDW DELL'ANDAMENTO DEL LIVELLO DI FALDA NEGLI APPEZZAMENTI MONITORATI DURANTE L'AZIONE 3.2

Introduzione

A partire dalla sperimentazione sul canale Stiolo (2008-2011), le elaborazioni geostatistiche tramite il modello IDW o Inverse Distance Weighted, sono state utilizzate in tutti siti i regionali per lo studio delle relazioni fra canali invasati e falda ipodermica. Esse forniscono infatti uno strumento rapido e di facile comprensione, per estendere al territorio quanto misurato puntualmente nei piezometri tramite le letture manuali di profondità della falda. Di conseguenza, in base a quanto previsto nella fase $2c^2$, sono state prodotte, per ogni anno, immagini IDW relative all'andamento della falda ipodermica nei siti delle due aziende prescelte di Panzano (MO) e Valle Gaffaro (FE). Oltre ad esse, sono state realizzate anche immagini dello stesso tipo per l'azienda di S. Felice (MO), studiata invece nell'ambito dell'Azione 3.3. Anche i dati relativi a questo sito, infatti, che mostrano evidenti relazioni fra altezza dell'acqua nel canale e quota di falda, sono stati utilizzati per sviluppare il lavoro di modellazione nella fase 2d.

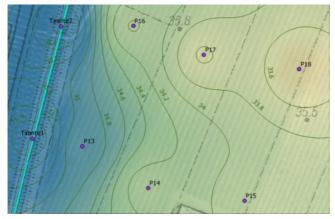

Di seguito, sono mostrate alcune immagini per sito, relative ciascuna ad un ciclo annuale di letture manuali di quota falda ed altezza di acqua nel canale. In ognuna sono visibili: la topografia, l'ubicazione dei piezometri, le aree a tinte graduate, corrispondenti ad intervalli di profondità di falda, ed infine le isofreatiche. Ad ogni colore corrisponde una quota di falda in valore assoluto s.l.m, come rappresentato nelle immagini delle scale riportate nel paragrafo dedicato a ciascun sito. Le quote hanno un errore stimato centimetrico, in quanto su tutti i siti descritti sono state eseguiti rilievi del p.c. in corrispondenza dei piezometri e dell'altezza dell'acqua nei canali, tramite strumenti GPS ad alta precisione.

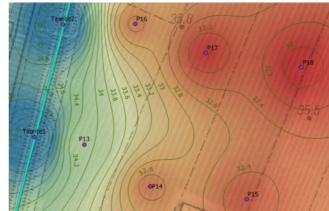

Sito Panzano (MO)

L'elaborazione effettuata interessa un'area di circa 3,5 ha, con il canal Torbido decorrente ad ovest dei due allineamenti di piezometri, posti a distanza crescente dal canale. Causa la stagione estremamente siccitosa e le dinamiche di approvvigionamento del canale (deriva le sue acque dal fiume Panaro), il tirante ha potuto essere mantenuto nel 2017 solo fino ad inizio luglio, riducendosi quindi al minimo fino ad ottobre, quando nuove piogge hanno consentito una sua risalita. Nel 2018, viceversa, non si è verificato tale problema, e sul canale si sono rilevati circa 30 cm di acqua fino a fine agosto, poi ridottisi a 15. Le due immagini 2017 proposte si riferiscono pertanto all'unico periodo in cui il canale ha potuto mantenere un regime delle acque da considerare normale per la stagione e tale da influenzare il livello di falda. Per il 2018 è visibile anche la situazione della falda ad agosto.

² "Elaborazione dei dati rilevati nel corso del periodo di monitoraggio a supporto dello sviluppo, confronto e verifica dei risultati forniti dall'attività di modellazione descritta in fase 2d".

Anno 2017


Valore	Colore
31.983700	
32,377900	
32.772100	
33.166300	
33.560500	
33.954800	
34.349000	
34,743200	
35.137400	


Figura 10: rappresentazioni IDW dell'andamento teorico del livello di falda nel sito di Panzano alle date 02/05/2017 (a sin.) e 14/06/2017 (a des.). La quota delle isofreatiche è in m s.l.m. A fianco, la scala colorimetrica utilizzata.

Come si desume da queste prime immagini, il livello dell'acqua nel Torbido nel corso della stagione irrigua è posizionato circa 2- 3 m più in alto rispetto a quello di falda. L'alimentazione sembra evidente nella parte sud, ove la falda è circa un metro più alta rispetto a quella nord. La relazione di quest'ultima con le acque infiltrate dal canale sembra invece più problematica, a causa della presenza di un tratto impermeabilizzato di circa 100 m nei pressi del castello di Panzano.

Dai primi di maggio a metà giugno la falda si abbassa mediamente di circa mezzo metro, com'è chiaramente osservabile dall'andamento delle isofreatiche nella parte sud, la quale, procedendo la stagione irrigua, tende ad allinearsi alle stesse quote della parte nord.

Anno 2018

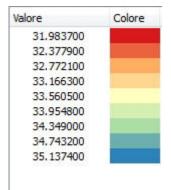


Figura 11: rappresentazioni IDW dell'andamento teorico del livello di falda nel sito di Panzano alle date 15/05/2018 (a sin.) e 07/08/2018 (a des.). La quota delle isofreatiche è in m s.l.m. A fianco, la scala colorimetrica utilizzata.

A maggio 2018, il livello di falda nel Torbido si posiziona, date le intense precipitazioni, a quote di circa un metro superiori rispetto a quanto osservato nel 2017. Permane una differenza di quota fra i piezometri nei due allineamenti, come sempre a favore dell'allineamento sud, che sembra usufruire più facilmente dell'apporto di acque dal Torbido. Essa, però, si attenua fra i piezometri più distanti (circa 40 cm), probabilmente a causa dell'innalzamento generale della falda, che contribuisce ad appiattire il divario registrato invece nel 2017.

Da metà maggio a inizio agosto la falda si abbassa mediamente di circa un metro e mezzo, anche se i cali minori si riscontrano in prossimità del Torbido (88 cm nel P13).

Sito S. Felice s. P. (MO)

L'elaborazione interessa un'area di circa 3 ha, con il canale Ramedello situato all'estremo sud dei due allineamenti di piezometri, posti a distanza crescente dal canale. Al contrario del Torbido, il Ramedello ha potuto rimanere invasato continuativamente, sia nel 2017 che nel 2018, fino agli inizi di ottobre, senza importanti abbassamenti del tirante, posizionato fra i 30 ed i 40 cm. Sono proposte, per ciascuno dei due anni, tre immagini decorrenti dall'inizio della stagione irrigua fino alla raccolta dei frutti nel pereto in cui sono collocati i piezometri.

Anno 2017

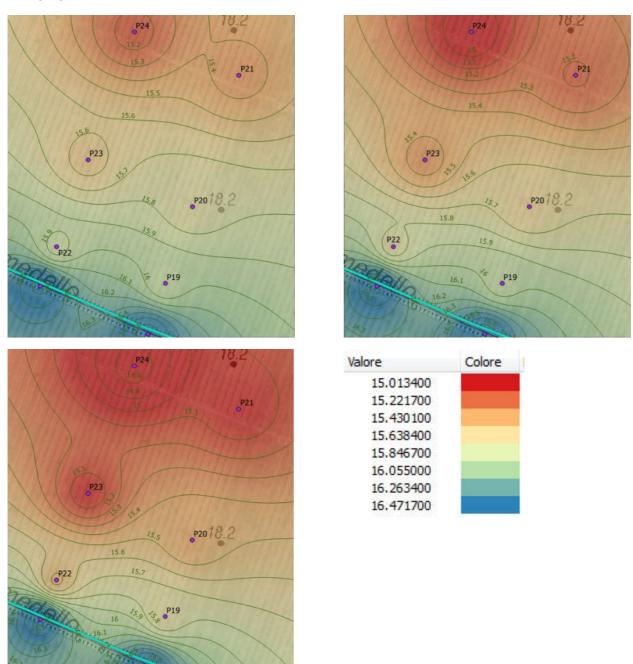


Figura 12: rappresentazioni IDW dell'andamento teorico del livello di falda nel sito di Panzano nei tre momenti 04/05/2017 (a sin.), 14/06/2017 (a des.), 10/08/2017 (in basso a sin.). La quota delle isofreatiche è in m s.l.m. In basso a destra la scala colorimetrica utilizzata.

Anno 2018

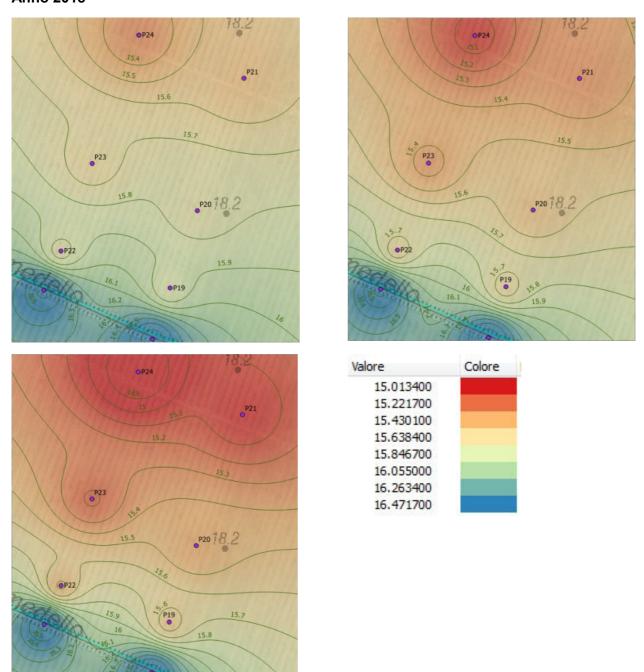


Figura 13: rappresentazioni IDW dell'andamento teorico del livello di falda nel sito di Panzano nei tre momenti 10/05/2018 (a sin.), 20/06/2018 (a des.), 20/08/2018 (in basso a sin.). La quota delle isofreatiche è in m s.l.m. In basso a destra la scala colorimetrica utilizzata.

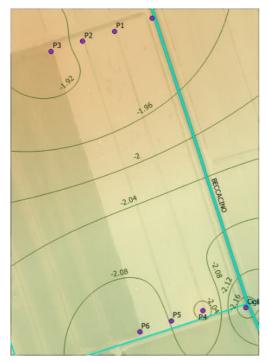
Nel 2018 è percepibile lo stesso andamento asimmetrico di quota di falda nei due allineamenti di piezometri riscontrato nel 2017, anche se con differenze più ridotte. L'andamento climatico (maggiori precipitazioni nel 2018), sembra avere effetti minimi sull'altezza di falda, totalizzando mediamente non più di 10 cm di risalita aggiuntiva. Fra piezometri più vicini e più lontani dal canale permane per tutto il periodo una differenza di circa 60 - 70 cm di quota falda, ossia circa 220 cm dal p.c. nel P19 e nel P22 e circa 290 cm (al limite della capacità di rilievo nei piezometri) nel P21 e nel P24.

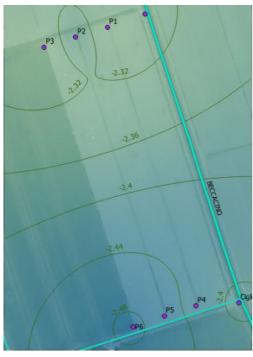
Figura 14: Il canal Torbido, nel tratto impermeabilizzato presso il castello.

Figura 15: Il canale Ramedello visto da est. A destra nella foto, il pereto che ospita i piezometri.

Figura 16: Lo scolo Beccaccino invasato a inizio stagione irrigua.

Sito Valle Gaffaro (FE)


L'elaborazione interessa un'area di circa 5 ha, con lo scolo Beccaccino situato ad est dei due allineamenti di piezometri, posti a distanza crescente dal canale in un campo coltivato ad asparagi. Si segnala che i piezometri situati nel campo consentono di esplorare l'andamento della falda ipodermica fino a circa 120 – 130 cm dal p.c. Tramite essi (e i due strumenti di lettura in continuo Diver sistemati nel P4 e nel P6) è possibile ricostruire l'andamento della falda nel corso dell'anno fra i circa -50 cm all'apice della stagione irrigua ed i – 130 di dicembre-gennaio. Dopo tale periodo, la falda scende oltre le capacità di rilievo degli strumenti.


La gestione irrigua avviene tramite l'immissione in fossi laterali di acqua proveniente da un canale irrigatore in cemento più ad ovest, gestito dal Consorzio di Bonifica Pianura di Ferrara. Dai fossi l'acqua, per infiltrazione nel terreno molto permeabile (sabbioso), giunge ad alimentare ed innalzare la sottostante falda ipodermica, fino a quote accessibili alle radici delle piante. Seguendo la linea di pendenza, la falda affiora nel Beccaccino, il quale a sua volta funge sia da barriera idraulica per rallentare un deflusso troppo veloce, sia da scolo delle acque in eccesso, convogliandole verso il più meridionale Collettore Giralda. Per il 2017 sono proposte tre immagini, decorrenti dall'inizio della stagione irrigua fino al periodo di svaso (ottobre), relative all'andamento della quota di falda; per il 2018, invece, le elaborazioni sono eseguite sui valori di salinità riscontrati in campo con il conduttimetro contestualmente alle letture di falda.

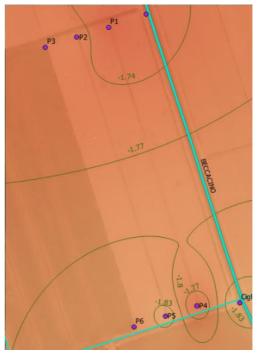


Figura 17: Posizionamento di un piezometro in pozzetto nel sito di Valle Gaffaro.

Anno 2017

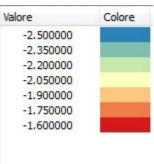
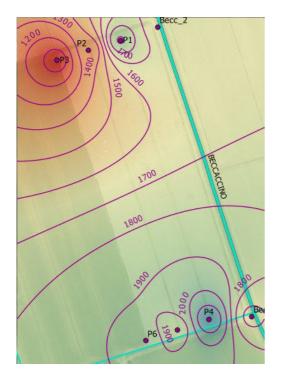



Figura 18: rappresentazioni IDW dell'andamento teorico del livello di falda nel sito di Valle Gaffaro nei tre momenti 10/04/2017 (a sin.), 09/08/2017 (a des.), 05/10/2017 (in basso a sin.). La quota delle isofreatiche è in m s.l.m. In basso a destra la scala colorimetrica utilizzata.

Come si desume dalle immagini, la falda ipodermica oscilla nel corso della stagione irrigua fra 1,5 e 2,5 m sotto il livello del mare, il che è tipico in queste aree di piana costiera mantenute artificialmente drenate. Lo stesso piano campagna è posto in zona fra -1,3 e -1,5 m dallo zero altimetrico. Con l'immissione a pieno regime dell'acqua da parte del canale irrigatore occidentale, la falda risale fino a circa -1,7/-1,8 m dallo zero altimetrico (ossia a circa 50 cm dal piano campagna), come visibile nell'immagine del 9 agosto 2017. Le isofreatiche mostrano un evidente gradiente di quota da nord a sud, che si mantiene comunque nell'ordine di 10 - 15 cm sui 350 m che separano l'allineamento settentrionale di piezometri da quello meridionale (pendenza di circa 0,03%). L'andamento sinuoso delle isofreatiche a sud lascia presupporre che vi sia una moderata

azione di drenaggio delle acque di falda nei pressi del Beccaccino, anche se valutabile nell'ordine di pochi cm di dislivello: per avere conferme, è probabilmente necessario avere più punti di rilievo in corrispondenza dello stesso canale, ossia non solo in corrispondenza del sifone a sud, ma anche nelle parti centrale e settentrionale.

Anno 2018

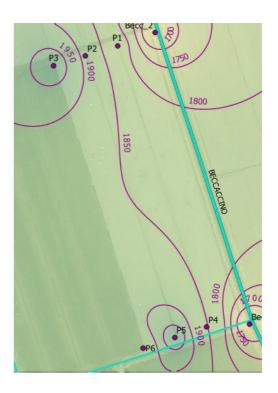


Figura 19: rappresentazioni IDW dell'andamento teorico della conducibilità elettrica nella falda del sito di Valle Gaffaro nei due momenti 31/07/2018 (a sin.) e 03/10/2018 (a des.). I valori sono in μS/cm. In basso, la scala colorimetrica utilizzata.

I due momenti rappresentati si situano ai due estremi della gestione irrigua del campo di asparagi monitorato. L'immagine a sinistra mostra la situazione della conducibilità elettrica nelle acque di falda al momento in cui è massima l'immissione, per infiltrazione laterale, delle acque poco saline (circa 800 μS/cm) fornite dal Consorzio di Bonifica. A destra, viceversa, è illustrata la situazione ad ottobre, quando gli apporti irrigui sono cessati. Quest'ultima immagine evidenzia come, in condizioni normali, l'effetto dello scolo Beccaccino sia di attenuare i valori di salinità della falda posta in prossimità (riduzione di circa 200 – 300 μS/cm rispetto al P3 ed al P6). Quando invece viene immessa acqua irrigua poco salina, l'effetto di mitigazione è visibile soprattutto a nord e nei piezometri più distanti dal Beccaccino, mentre, a sud, essi mostrano valori analoghi a quanto riscontrato in ottobre. Non si è riusciti a fornire una spiegazione esauriente del comportamento della falda nella parte meridionale, anche se sicuramente la già citata scarsità di punti di rilievo e la ridotta profondità d'indagine hanno giocato un ruolo determinante, così come l'impossibilità logistica di posare CTD – Diver per il contemporaneo monitoraggio dell'altezza di falda e salinità.

Misure di portata sui canali afferenti ai siti di monitoraggio

Misure con strumento natante RiverSurveyor

Figura 20: Utilizzo del River Surveyor sullo scolo Beccaccino

Canale	N sezione	Descri	Data	Portata (m3/sec)	Portata (I/sec)	Note
Torbido	1	tratto nord; 50 m dal ponte del castello di Panzano; sponde in terra	22/06/2016	0,373	373	
Beccaccino	1	tratto circa 200 m a nord del ponte prima dello sbocco sullo Scolo Giralda	23/06/2016	0	0	Valori di velocità troppo bassi; non si è riusciti ad effettuare la misura; necessita il mulinello idrometrico

Misure con mulinello idrometrico SIAP ME 4001 (2016)

	N		Larghezza	Tirante medio	Area sezione	Misura 1	Misura 2	Misura 3	Portata	
Canale	sezione	Descrizione	(m)	(m)	(m2)	(m/sec)	(m/sec)	(m/sec)	(I/sec)	Data
Ramedello	0	Stramazzo con palancolate sotto ponticello capannone azienda Bergamini	0,94	0,07	0,07					
Ramedello	1	su ponticello 20 m ad E ponte ferrovia, sponde e fondo (?) in cemento	2,4	0,25	0,60	0,086	0,120		61,80	18/08/2016
Ramedello	2	all'altezza di filare 35 fra le 2 file di piezometri; sponde in terra	2,85	0,33	0,95	0,073	0,048		57,48	18/08/2016
Torbido	1	tratto nord; sul ponte del castello di Panzano; sponde in terra	3,5	0,25	0,88	0,460			402,50	22/06/2016
Torbido	2	tratto sud; 200 m prima del ponte stradale; sponde e fondo in cemento	3,5	0,15	0,53	0,341			179,03	18/08/2016
Beccaccino	2a	tratto vicino ponte primo di sbocco su Scolo Giralda	0,99	0,1	0,099	0,258	0,206	0,279	24,519	14/09/2016
Beccaccino	2b	tratto vicino ponte primo di sbocco su Scolo Giralda	0,99	0,1	0,099	0,899	0,897		88,902	14/09/2016
Fosso 1b	1	canale irriguo in cemento; misura presso centro aziendale	0,35	0,45	0,16	0,424	0,477	0,399	68,25	14/09/2016

Misure con mulinello idrometrico SIAP ME 4001 (2017)

Canale	N sezione	Descrizione	Larghezza (m)	Tirante medio (m)	Area sezione (m2)	Misura 1 (m/sec)	Misura 2 (m/sec)	Portata parziale (I/sec)	Portata totale I/sec	Data
Callale	Sezione	Descrizione	(111)	(111)	(1112)	(III/Sec)	(III/Sec)	(I/Sec)	1/560	Dala
Ramedello	1a	Parte centrale a 150 cm da sponde	1,4	0,65	0,91	0,024	0,039	28,67		
Ramedello	1b	Sezione laterale nord	0,8	0,37	0,30	0,013		1,92		
Ramedello	1c	Sezione laterale sud	0,8	0,37	0,30	0,019		2,81	33,40	25/07/2017
Ramedello	2	Parte centrale a 150 cm da sponde	1	0,9	0,90	0,045		40,80		
Ramedello	2	Sezione laterale nord1	0,5	0,77	0,39	0,035		13,56		
Ramedello	2	Sezione laterale nord2	0,5	0,38	0,19	0,022		4,22		
Ramedello	2	Sezione laterale sud1	0,5	0,47	0,24	0,008		1,83		
Ramedello	2	Sezione laterale sud2	0,5	0,8	0,40	0,022		8,89	69,30	10/08/2017
Torbido	1	Tratto nord (castello di Panzano): sez centrale Tratto nord (castello di	1,35	0,215	0,29	0,320	0,330	94,33		
Torbido	1	Panzano); sezione ovest	0,67	0,18	0,12	0,220		26,53		
Torbido	2	Tratto nord (castello di Panzano); sezione est	0,67	0,18	0,12	0,200		24,12	144,98	03/10/2017
Cond. Volano	1	Sezione centrale	2	0,8	1,60	0,096		153,42		
Cond. Volano	1	Sezione nord	2	1	2,00	0,126		252,44		
Cond. Volano	1	Sezione sud	2	0,6	1,20	0,080		96,00	501,87	09/08/2017

Misure con mulinello idrometrico SIAP ME 4001 (2018)

Canale	Data	Descrizione punto	Larghezza (m)	Tirante medio (m)	Area sezione (m2)	Media misure (m/sec)	Portata totale l/sec	Note
Ramedello	01/06/2018	Parte centrale a 150 cm da sponde	2,03	0,75	1,52	0,019	28,93	All'altezza di filare 35 fra le 2 file di piezometri; sponde in terra
Ramedello	04/07/2018	Parte centrale a 150 cm da sponde	2,73	0,48	1,31	0,011	14,41	All'altezza di filare 35 fra le 2 file di piezometri; sponde in terra
Torbido	01/06/2018	Tratto 100 m a sud ponte stradale	3,21	0,42	1,35	0,264	355,92	N° 5 misure sulla sezione
Torbido	13/08/2018	Tratto 100 m a sud ponte stradale	3,44	0,28	0,96	0,337	324,60	N° 5 misure sulla sezione
Cond. Volano	31/05/2018	•	2	1,15		0,124		N° 2 misure sulla sezione
Cond. Volano	01/08/2018	Ponte acquedotto	2	1,05	2,10	0,132	277,20	N° 2 misure sulla sezione

ATTIVITA' SVOLTE DAL DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA, AMBIENTALE E DEI MATERIALI (DICAM) NELL'AMBITO DELL'AZIONE 3.2

All'interno dell'Azione 2, il DICAM è stato chiamato ad elaborare i dati provenienti dai siti di monitoraggio per sviluppare il modello statistico-matematico in grado di descrivere l'interazione fra l'acqua infiltrata dai canali e la falda ipodermica. L'obiettivo era quello di quantificare delle fasce di influenza attorno ai canali, entro cui è evidente il contributo di quest'ultimi alla falda.

L'attività svolta si è articolata nelle seguenti fasi:

- (1) Analisi dello stato dell'arte e dei codici disponibili per simulare l'interazione canale-falda: Lo studio dell'interazione tra canali e falda viene condotto utilizzando modelli numerici. Tra i modelli di calcolo presenti in letteratura che risolvono problemi di flusso in mezzi porosi, sono stati presi in considerazione e analizzati tre differenti software prodotti dall'U.S. Geological Survey: MODFLOW, SUTRA e VS2DI. A valle di simulazioni preliminari e dopo un'attenta analisi delle potenzialità dei singoli applicativi, la scelta è ricaduta sul modello VS2DI in grado di risolvere, con schemi numerici alle differenze finite, in modo accurato e computazionalmente conveniente, l'equazione di Richards che descrive il flusso dell'acqua in domini porosi a saturazione variabile. Il modello, rispetto agli altri codici menzionati, è stato quindi ritenuto più idoneo per la finalità dell'Azione 2.
- (2) <u>Analisi dei dati di monitoraggio provenienti dai siti studio</u>: per poter calibrare e validare il modello, al fine di renderlo applicabile alle diverse condizioni di interazione ritenute rappresentative a scala regionale, si è reso necessario analizzare i dati raccolti durante le campagne di monitoraggio. In particolare, sono stati analizzati i dati relativi ai siti di Pia Est, Cavezzo e Stiolo. Nello specifico, sono stati considerati i seguenti dati:
 - SITO Pia Est: geometria del canale; quotatura dei piezometri; tessitura del suolo attraversato dal canale; misure della conducibilità idraulica satura Ksat; misurazioni di perdite per infiltrazione nel canale (prove condotte in data 13/6/2013 21-23/05/2017); letture del tirante idraulico e del livello di falda (serie temporali relative al periodo 2011-2015); dati climatici (evapotraspirazione, temperatura, precipitazione) nel sito di monitoraggio (serie temporali relative al periodo 2011-2014);
 - SITO Cavezzo: geometria del canale; quotatura della sezione del canale e dei piezometri; tessitura del suolo attraversato dal canale; misure della conducibilità idraulica satura Ksat; letture di livello della falda ipodermica misurata manualmente e attraverso diver (serie temporali relative al periodo 19/12/2011 – 26/10/2015);
 - SITO Stiolo: geometria del canale; quotatura della sezione del canale e dei piezometri; tessitura del suolo attraversato dal canale; misure della conducibilità idraulica satura Ksat; misurazioni di perdite per infiltrazione nel canale; lettura estiva del tirante idrico e livello della falda ipodermica misurata manualmente e attraverso diver (serie temporali relative al periodo 26/02/2008 – 5/03/2012);
- (3) <u>Simulazioni numeriche</u>: dopo aver analizzato i dati raccolti presso le stazioni sopra descritte e aver fornito delle interpretazioni per gli andamenti riscontrati, sono state svolte delle simulazioni tramite software *VS2DI* per valutare l'influenza di vari parametri, in particolare quelli che caratterizzano il terreno, sulla modellazione del fenomeno di infiltrazione. Per ciascuno dei tre canali è stato realizzato un modello basandosi sulle informazioni disponibili relative a topografia, sezione, profilo stratigrafico e parametri di permeabilità dei suoli (Fig. 18).

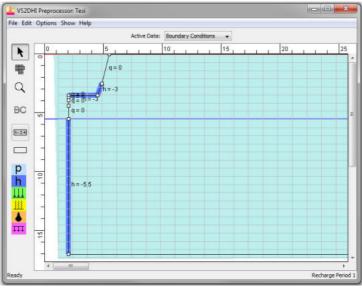


Figura 21: Modello bidimensionale del canale Stiolo. Per ragioni di simmetria rispetto all'asse del canale si è scelto di rappresentare nel modello solo metà sezione

Si è scelto un periodo di riferimento per la simulazione per il quale fossero disponibili, presso una sequenza di piezometri di monitoraggio, dati osservati che avessero andamenti coerenti con le ipotesi di influenza del canale sul livello di falda. Infine, considerando tali livelli di falda osservati e tenendo conto delle informazioni disponibili riguardanti i tiranti presenti nei canali e i dati meteorologici, sono state impostate le condizioni iniziali e al contorno necessarie per l'esecuzione della simulazione. Per ciascun canale sono state eseguite numerose simulazioni con set di parametri differenti ed ogni volta se ne sono confrontati i risultati con i dati osservati, al fine di individuare il set ottimale che inserito nel modello permettesse di ottenere livelli di falda simulati più simili possibile ai livelli reali misurati (Fig. 19 e 20).

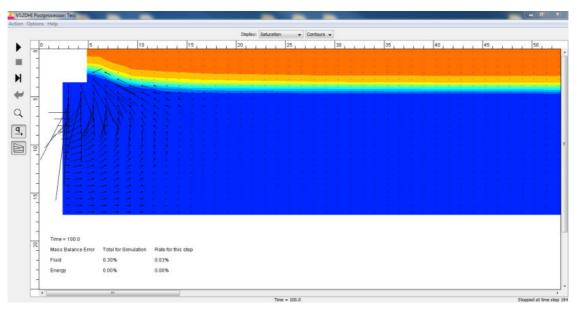


Figura 22: Simulazione di variazione della saturazione del suolo per effetto del solo canale.

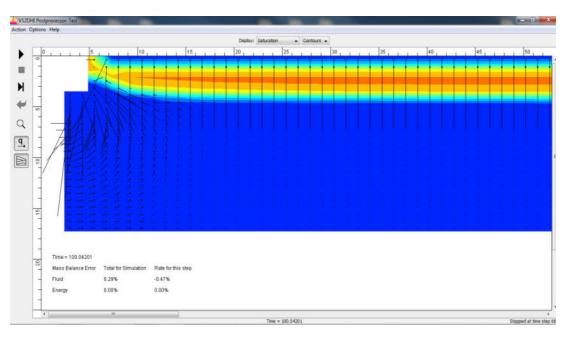


Figura 23: Simulazione di variazione della saturazione del suolo in presenza di precipitazioni.

Per velocizzare e semplificare la procedura di analisi dei risultati è stato sviluppato un breve codice di calcolo che, a partire dai dati contenuti nel file di output compilato dal software, fosse in grado di elaborare un grafico di confronto diretto tra andamento reale del livello di falda nel tempo a diverse distanze dal canale e andamento simulato e due grafici di regressione lineare tra i dati simulati e misurati presso due piezometri di riferimento a distanze crescenti dal canale.

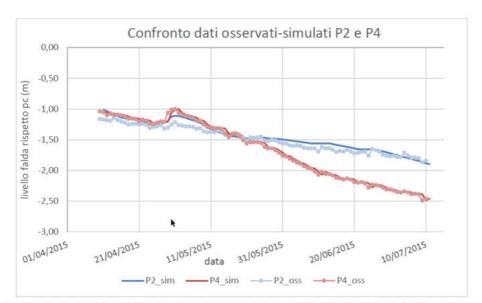


Grafico 13: Confronto tra i livelli misurati con diver presso i piezometri P2 e P4 e i livelli simulati a 78m e 200m di distanza dal Diversivo di Cavezzo.

Grafico 7: Esempio di confronto fra livelli di altezza di falda realmente misurati su due piezometri a distanze crescenti da un canale (Diversivo di Cavezzo) e livelli stimati dal modello.

La lunga serie di simulazioni ha permesso di ottenere importanti indicazioni riguardanti l'influenza di vari parametri sulla modellazione del fenomeno di infiltrazione. L'attenzione è stata rivolta soprattutto ai parametri associati al terreno: quelli che risultano influire maggiormente sul risultato sono il parametro k_s (conducibilità idraulica satura del terreno) e i parametri della formula di Van Genuchten, α e β . Proprio agendo sui valori associati a questi tre parametri è stata effettuata la calibrazione dei modelli.

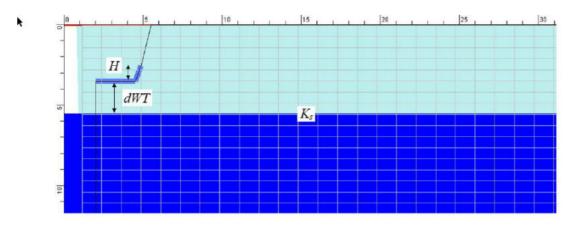


Figura 52: Rappresentazione schematica del sistema composto da canale, terreno circostante (in azzurro) e falda (in blu) preso come riferimento per la creazione del modello. H, dWT e Ks sono le variabili del modello. (immagine fornita da V. Ciriello)

Figura 24: Le tre variabili finali su cui si basa il modello: H (tirante del canale) Ks (conducibilità idraulica satura) e dWT (differenza di quota fra fondo canale e superficie della falda).

Nel corso delle simulazioni si è potuta testare inoltre la significativa influenza del fattore climatico sul livello di falda: eventi di precipitazione rilevanti si traducono in un repentino innalzamento del livello di falda, mentre l'evapotraspirazione, soprattutto nel periodo estivo quando è più accentuata e prolungata, ne causa l'abbassamento.

(4) <u>Traduzione in linguaggio GIS</u>: una volta terminate l'analisi e la modellazione del fenomeno di infiltrazione, ci si è concentrati sulla traduzione del modello sviluppato in un linguaggio che ne permettesse l'implementazione in GIS, in modo tale da poter creare un nuovo strato informativo, raffigurante l'influenza della rete di canali irrigui sul livello della falda superficiale, che potesse essere inserito come nuova componente nel bilancio idrico del sistema *IRRINET* per rendere più accurata la stima del livello di falda in prossimità dei canali irrigui ed affinare il calcolo del fabbisogno idrico delle colture ivi situate.

Per prima cosa, è stato elaborato un database contenente tutti valori assunti in corrispondenza dei vari tratti di canale delle variabili di input del modello: tirante (H), conducibilità idraulica satura (k_s) e distanza tra fondo del canale e livello di falda indisturbata (dWT).

Le informazioni necessarie per costruire questo database sono state desunte, tramite interpretazioni, semplificazioni e classificazioni, dai vari strati informativi disponibili in Regione. In particolare, sono stati acquisiti gli shapefile relativi alla rete dei canali irrigui di tutta la regione Emilia-Romagna, alla Carta di conducibilità idraulica satura dei suoli di pianura in scala 1:50.000 (Ks_RER), alla Carta di Estendibilità del Dato di Falda (Carta EDF).

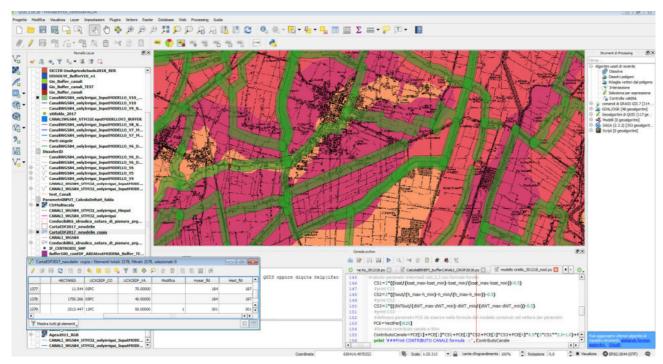


Figura 25: Rappresentazione GIS con fascia di pertinenza (linee verdi) su cui agisce l'innalzamento della falda da parte dell'acqua infiltrata dai canali; esse sono sovrapposte alle aree colorate della Carta di Estendibilità del Dato di Falda. In basso a sinistra, database contenente per ogni tratto i valori di input del modello; in basso a destra, parte del linguaggio Python utilizzato per il calcolo e l'assegnazione di un valore di innalzamento del livello di falda per ogni tratto di canale.

È stato quindi redatto un codice in linguaggio *Python* che, per ogni tratto di canale presente nella rete regionale, accede al database contenente le variabili di input, estrae quelle corrispondenti all'elemento in analisi, applica il modello e poi, dopo aver aggiunto una nuova colonna al database di partenza, vi inserisce il contributo all'innalzamento del livello di falda dovuto alla presenza del canale.

Tale dato, è stato poi utilizzato per la costruzione di un buffer di influenza attorno ad ogni elemento della rete irrigua, che associa alla falda presente nel terreno circostante ciascun canale l'opportuno innalzamento di livello.

VALORI DI Ks (conducibilità idraulica satura) misurati nel 2017 sul fondo di alcuni canali monitorati nel passato

Figura 26: Misure infiltrometriche tramite doppio cilindro eseguite a febbraio 2017 sul fondo del canale Ramedello.

Sito Stiolo (RE)

Doppio Anello fondo canale

Calcolo Darcy	unit
0,0012	cm/sec
101,52	cm/d
1,02	m/d

Permeametro Guelph su fondo canale (10 cm)

Calcolo	unit
0,00002	cm/sec
1,94	cm/d
0,02	m/d

Sito Pia Est (RE)

Doppio Anello fondo canale

Calcolo Darcy	unit
0,0002	cm/sec
19,58	cm/d
0,20	m/d

Permeametro Guelph su fondo canale (10 cm)

· · ·	
Calcolo	unit
0,00003	cm/sec
2,42	cm/d
0,02	m/d

Sito S. Felice - (MO)

Doppio Anello fondo canale

Calcolo Darcy	unit
0,007	cm/s
0,00007	m/s
6,048	m/d

Permeametro Guelph su fondo canale (20 cm)

	· • • • • • • • • • • • • • • • • • • •
Calcolo	unit
0,00010	cm/sec
0,000001	m/s
0,1	m/d

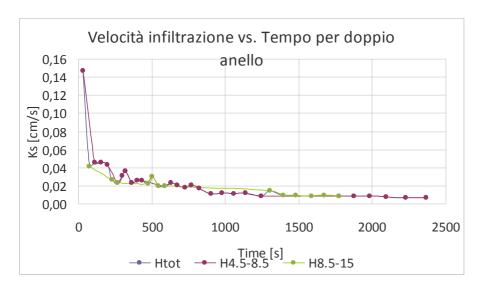


Grafico 8: Andamento della velocità d'infiltrazione nel tempo fino alla velocità stabilizzata, nel sito di S. Felice.

IMPLEMENTAZIONE DELLE FASCE DI PERTINENZA DEI CANALI IRRIGUI ALL'INTERNO DELL'APPLICATIVO WEB IRRINET - SPECIFICHE INFORMATICHE

Si tratta dell'estensione della funzionalità di geolocalizzazione plot di IN, utilizzata in fase di creazione e modifica plot, in modo che venga identificato il buffer di canale in cui eventualmente ricade il centroide del plot.

E' stata creata (nel database di IN) una nuova tabella GisBufferCanal con i seguenti campi:

id

DeltaH

Geom

In tale tabella, in un campo di struttura GIS sono riportate i poligoni individuati con l'operazione di buffering per ogni canale

Estensione della entità plot (appezzamento di IN) in modo che venga salvato come attributo di plot l'informazione "Delta H canale" [FaldaDeltaH]

E' stato aggiunto un campo [Plot.FaldaDeltaH] che si riferisce al valore dell'incremento di falda da attribuire al canale più vicino.

Modifica della funzionalità di georeferenziazione del plot

E' stata modificata la funzionalità di georeferenziazione del plot includendo anche la determinazione del contributo eventuale di un canale all'aumento del livello della falda misurata. Per identificare il buffer del canale in cui eventualmente ricade il centroide del plot si opera con il seguente algoritmo:

- sulla base del centroide del plot si costruisce un intorno circolare del centroide di ampiezza pari alla massima larghezza di buffer ammessa (80 metri), valore che è stato memorizzato in tabella WBPAR_GeneralPar come [MaxBufferWidthM]
- mediante una query spaziale si identifica il canale che ricadendo all'interno del buffer si trova alla distanza minore dal centroide e si utilizza il suo valore di [GisBufferCanal.DeltaH], salvandolo nel campo [Plot.FaldaDeltaH]
- nel caso risulti che il centroide non ricada in alcun buffer di canale, il campo [Plot. FaldaDeltaH] avrà valore NULL

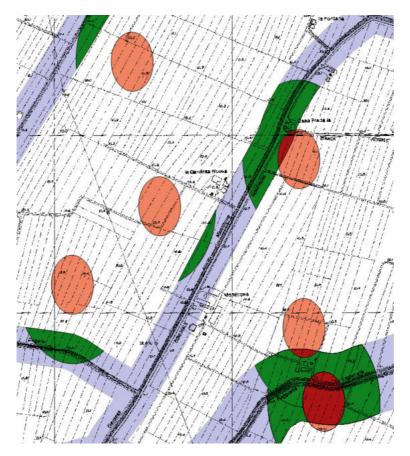


Figura 27: Centroidi di appezzamenti configurati su IrriNet col relativo buffering a 80 m (rosa) e 200 m (verde). Come si vede, la fascia di pertinenza dei canali fornisce un contributo di altezza di falda nel campo FaldaDeltaH del centroide solo se esso lo interseca ad 80 m (aree rosse).

Modifica dell'algoritmo di riempimento dei dati di falda

Allo scopo di tenere conto nel calcolo del bilancio idrico del contributo dei canali all'innalzamento del livello di falda ipodermica, è stata modificata la funzionalità di caricamento dell'array dei dati di falda all'interno del motore di calcolo, che ora tiene conto dell'eventuale contributo del canale, sottraendo al valore misurato di profondità il valore preso dal campo [Plot. FaldaDeltaH].

Azione 3.3: Verifica del contributo idrico da falda ipodermica su colture selezionate.

ALLEGATO 15

NOME	DESCRIZIONE
Fase	Sigla fase e titolo come risulta nel Piano; descrizione subfasi (a), (b), (d) etc.
Strumenti	Principali strumenti previsti nell'esecuzione della sub-fase
Note (+ anno)	Note relative alle attività svolte nell'anno
Periodo	Periodo in cui è prevista l'esecuzione della fase
Check	ok = subfase eseguita; ok? = subfase eseguita in parte; no = subfase da eseguire
Data 123	Date e località in cui sono state effettuate le principali operazioni afferenti alla subfase

Tabella 9: Metadati Check List di campagna per Azione 3.3 (aggiornamento ottobre 2017)

Fase 3a Allestimento di nuovi siti di monitoraggio	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
a) sistemazione e georeferenziazione tramite GPS di 6 piezometri in PVC di 300 cm in 2 allineamenti da 3 strumenti (distanze previste 25, 75 e 150 m).	piezometri + GPS	Tutti posizionati; risolti problemi di interramento con tubo interno e geotessile; già ricevuti i grigliati da IGM	Fatto Pomposa e Ramedello:	marzo - aprile	ОК	FE: 19/05/16 e 30/11/2016 (tubi 5 cm e diver)	MO: 27/06/16 e 05/12/2016 (tubi 5 cm e diver)	FE GPS Pomposa 17/03/2017; MO GPS Ramedello 04/05/17
b) In uno dei 2 allineamenti di ciascun sito sistemazione di 2 Mini-diver, calati all'interno del piezometro più vicino e più lontano dal canale	4 Diver	arrivati il 02/09/16 e posizionati a dicembre		aprile - giugno	ОК	30/11/16 FE	05/12/16 MO	
c) scelta di gruppi di 6 piante per ciascun piezometro in azienda Bergamini		Selezionati a dicembre 2016 e segnalati con nastro; bisogna escludere irrigazione a goccia; previsto feb 2017	Acquisiti materiali richiesti a Bragaglia: bypass effettuato il 23 febbraio 2017	Febbraio 2017	ОК	scelta piante 10/06/2016	bypass su gruppi di piante 23/02/2017	

Fase 3b Configurazione degli appezzamenti su Irrinet	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
d) Configurazione su Irrinet di ciascuno dei gruppi di piante, dopo aver raccolto dalle aziende agricole, i dati relativi a tutti i parametri di base		Fatto per tutte e 4 le aziende	riconfigurare con aziende per il 2018 e ricordare di stampare i grafici a settembre 2018		ок	Esportate immagini da Irrinet il 17/09/2018		

Fase 3c Monitoraggio dei gruppi di piante	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
e) Letture manuali a cadenza quindicinale con appositi strumenti di misura in tutti i piezometri	flessometro	Letture eseguite da Aziende agricole	Continua ricezione delle letture	luglio 2016 - dicembre 2018	ок	Dal 22/06/16 FE	dal 05/07/16 MO	
f) Ogni tre mesi circa scarico dati Diver	lettore + pc portatile	Già fatta 1 lettura su Ramedello. Tutto ok	Diver W2823 su Ramedello e W2829 su Pomposa rotti. Già segnalato ad Ecosearch; sostituiti con R9366 e nuovo AM157.	luglio- dicembre	ок	12/03/2018 FE;	31/05/2018 FE; 01/06/2018 MO	17/01/2019 FE; 14/01/2019 MO

Fase 3c Monitoraggio dei gruppi di piante	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
g) campionamento orizzonti di suolo (uno iniziale in fase fenologica prestabilita su Irrinet, poi 2 di controllo durante la stagione). Campioni di terreno inviati al laboratorio CER e seccati in stufa 105°		da decidere secondo irrigazioni	Effettuato campionamento di suolo preliminare a Pomposa per taratura EM38 il 12/03/2018	aprile - agosto 2018	ок	31/05/2018 FE; 01/06/2018 MO	05/07/2018 FE; 04/07/2018 MO	31/07/2018 MO; 01/08/2018 FE
h1) Rilievi della salinità in tutti i piezometri presso l'azienda La Pomposa e con stessa scansione delle letture manuali, idem per acqua del condotto Volano e del Po di Volano	Abelli con conduttimetro portatile	Effettuata escursione con Severi del SGSS: progettata posa di strumenti di misura in continuo della salinità	Posa di 4 piezometri e di strumenti per SGSS; OK da ex-genio civile per posa piezometro su Volano; continuano le letture.	luglio 2016 - dicembre 2018	ок	da 22/06/16 a FE	relazioni SGSS 12/01/2018	Ricevute ultime letture da sensori SGSS il 13/12/2018
h2) Raccolta, 2 volte l'anno, prima e nel pieno della stagione irrigua, di un campione di acqua da ciascuno dei piezometri nell'azienda La Pomposa. In situ misura di cond. elettrica, pH e T°. I campioni saranno trasportati al laboratorio CER, per l'analisi dei principali ioni Ca++, Mg++, Na+, Cl-, SO4, NH4+.	Boccette plastica 250 ml, Bailer e tanica acqua deionizzata	Prima raccolta alcuni campioni influenzati da irrigazione (P8 e P12); nella seconda non raccolto campione Condotto Volano (canale svasato)	Analisi completate	luglio e dicembre	ок	31/05/2018 FE	12/11/2018 FE;	

Fase 3c Monitoraggio dei gruppi di piante	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
i) Rilievi con sonda EM38: nel corso di ogni stagione irrigua saranno eseguiti 2 rilievi per mappare in quasi-3D la conducibilità apparente del terreno fino ad una profondità di 0,75 cm dal piano di campagna.		Necessaria elaborazione geostatistica degli shapefiles	Effettuati rilievi di taratura abbinati a raccolta campioni di terra in Pomposa (12/03/2018)	maggio - agosto 2018	ок	12/03/2018 FE; 01/06/2018 MO	05/07/2018 FE;	01/08/2018 FE
I) Rilievi della temperatura fogliare con sensore all'infrarosso portatile Scheduler. Due rilievi ogni stagione irrigua su piante selezionate, per ciascuna delle tre distanze dal canale.	Scheduler	Stabilito standard di 15 battute x pianta in prossimità di piezometro	Ramedello: effettuati rilievi anche su piante irrigate fuori dal bypass; IR del 05/07/2017 a Pomposa: valori non validi su P10-P12	giugno- agosto 2018	ок	05/07/2018 FE; 04/07/2018 MO	31/07/2018 MO; 01/08/2018 FE	
sottoposta ad indagine,	grandi;	Metodologia 2018: 2 piante su asciutto e 2 su irrigato x la sequenza piezometri P22- P24 a Ramedello	Raccolta su 12 piante intere a Ramedello. idem a Pomposa ma senza distinzione asciutto/ irriguo	ago-18	ок	31/07/2018 MO	05/09/2018 FE	
percentuale. Misurazione	eye e	Messo a punto metodo per trascinare strumento più rapidamente lungo filari.	Utilizzata stessa metodologia dell'anno precedente, ma su più filari	giugno - agosto 2018	ок	31/05/2018 FE; 01/06/2018 MO	05/07/2018 FE; 04/07/2018 MO	31/07/2018 MO; 01/08/2018 FE

Fase 3c Monitoraggio dei gruppi di piante	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
z1) prove infiltrometriche sul fondo canale del sito Ramedello in canale asciutto e prove conduc idraulica (NON PREVISTO IN PROGETTO)		protocollo metodologico in bozza	Eseguite misure infiltrometriche su Ramedello a gennaio;	gennaio - maggio 2017	ок	19/01/2017 MO		
z2) misure sezione idraulica Po di Volano (NON PREVISTO IN PROGETTO)	drone natante		Effettuato da Bondesan (Consorzio Bonifica Pianura FE)	marzo	ок	FE 17/03/2017		
z3) Scarico sensori Watermark solo su pereto Pomposa. (NON PREV. IN PROGETTO)	sensori watermark, cavo e pc		Inserita centralina con sensori lungo filare P10	giugno - agosto 2018	ок	31/05/2018 FE;	01/08/2018 FE	23/01/2019 FE
z4) salinità del suolo solo su Pomposa. (NON PREVISTO IN PROGETTO)	conduttimetro	estratto rapporto 1:2	Attività una tantum, collegata al rilievo EM38	mar-18	ок	26/03/2018 FE		

Fase 3d Elaborazione dati	Strumenti	Note	Note 2018	Periodo	Check	Data 1	Data 2	Data 3
- media delle dimensioni	Strumenti GIS; software per elaborazioni statistiche ("R")		presenti i dati	luglio 2016 - dicembre 2018	ок	2019 grafici curve Diver; elaborazioni	grafici su calibri e peso frutti ok;	marzo 2019 effettuazione calcoli CWSI; elab. immagini Canopy Cover e.grafico sensori umidità

DESCRIZIONE DEI SUOLI

Nella successiva tabella sono riportati i codici delle 12 trivellate eseguite nel 2016 per la posa dei piezometri nei due siti - studio di Pomposa e S. Felice. Ad essi sono associate:

- Coordinate dei punti X e Y in UTM32 ETRS89;
- Unità Tipologica di Suolo (UTS) secondo il Catalogo dei Suoli della Regione Emilia-Romagna³ e relativa sigla cartografica.

Le schede pedologiche sono state compilate secondo i codici e gli standard descritti nel Manuale di campagna ed. 2002 del Servizio Geologico, Sismico e dei Suoli regionale.

Questo l'elenco:

Codice Trivellata	X	Y	UTS	Sito
E7609T0007	753264	4966908	STRADA REALE franco limosi (SRE1)	Pomposa
E7609T0008	753266	4966954	FORCELLO argilloso limosi (FOR1)	Pomposa
E7609T0009	753268	4967039	VOLANO franchi (VOL1)	Pomposa
E7609T0010	753058	4966805	VOLANO franchi (VOL1)	Pomposa
E7609T0011	753059	4966853	RUINA franco argilloso limosi, (RUI1)	Pomposa
E7609T0012	753061	4966941	RUINA franco argilloso limosi, (RUI1)	Pomposa
E7609T0019	668727	4969053	SECCHIA franco argillosi (SEC1)	S. Felice
E7609T0020	668742	4969094	SANT'OMOBONO franco argilloso limosi (SMB2)	S. Felice
E7609T0021	668768	4969168	SANT'OMOBONO franco argilloso limosi (SMB2)	S. Felice
E7609T0022	668666	4969071	SANT'OMOBONO franco argilloso limosi (SMB2)	S. Felice
E7609T0023	668684	4969122	SANT'OMOBONO franco argilloso limosi (SMB2)	S. Felice
E7609T0024	668712	4969199	SANT'OMOBONO franco argilloso limosi (SMB2)	S. Felice

³ Reperibile in http://geo.regione.emilia-romagna.it/cartpedo/catalogo_tipi_suolo.jsp

LETTURE MANUALI DELLA PROFONDITA' DI FALDA NEI PIEZOMETRI DEI DUE SITI STUDIO S. FELICE S. P. E POMPOSA

Sono di seguito presentate le tabelle che mostrano la quota falda rilevata manualmente in ciascuno dei piezometri posizionati nei due siti di S. Felice e Pomposa. La profondità è espressa in cm dal piano campagna. I valori si ritengono più attendibili a partire da dicembre 2016, quando nei piezometri è stato posizionato il tessuto/non tessuto per evitare intasamenti e vi sono stati collocati i lettori in continuo (Diver), che hanno permesso un controllo incrociato dei dati rilevati.

SITO S. FELICE

Data	P19	P20	P21	P22	P23	P24
05/07/2016	189	230	301	193	246	268
21/07/2016	206	241	301	200	260	301
04/08/2016	212	246	301	214	267	301
18/08/2016	210	250	301	218	265	301
01/09/2016	218	301	301	225	257	278
20/09/2016	221	301	301	234	301	301
03/10/2016	214	301	301	204	270	301
19/10/2016	222	257	301	222	260	301
03/11/2016	228	301	267	236	272	301
22/11/2016	229	263	248	227	275	284
24/11/2016	301	262	250	218	301	301
06/12/2016	232	266	262	283	271	301
23/12/2016	269	287	291	252	291	299
02/01/2017	262	275	283	246	278	288
19/01/2017	262	284	288	247	284	293
20/01/2017	258	272	282	246	278	284
07/02/2017	252	266	264	226	269	281
23/02/2017	237	256	279	216	260	277
27/02/2017	230	246	259	218	249	271
10/03/2017	226	247	256	216	248	263
20/03/2017	227	249	256	218	247	264
10/04/2017	185	218	246	189	227	256
20/04/2017	186	217	243	179	227	256
04/05/2017	184	220	246	181	235	261
11/05/2017	193	218	238	185	226	252
22/05/2017	192	223	247	188	231	261
09/06/2017	204	249	262	198	253	283
14/06/2017	181	232	263	193	256	286
20/06/2017	183	227	253	193	248	285
11/07/2017	198	239	259	204	264	295
20/07/2017	208	247	267	219	269	301
25/07/2017	203	256	275	213	276	301
07/08/2017	202	247	279	217	291	301
10/08/2017	205	251	279	219	287	301
11/09/2017	204	241	266	215	267	301
20/09/2017	216	247	268	215	267	301
12/10/2017	223	254	278	229	270	301
23/10/2017	232	262	282	235	271	301

Data	P19	P20	P21	P22	P23	P24
10/11/2017	255	272	292	246	286	301
20/11/2017	257	271	282	254	287	295
11/12/2017	266	281	288	262	291	301
20/12/2017	269	283	289	265	291	301
10/01/2018	270	291	295	271	297	301
23/01/2018	270	294	299	276	297	301
12/02/2018	270	289	290	274	299	294
20/02/2018	270	286	284	269	296	301
09/03/2018	202	230	254	210	249	275
20/03/2018	130	152	225	129	174	254
10/04/2018	181	202	213	181	209	228
20/04/2018	180	204	215	179	211	228
10/05/2018	194	219	231	191	226	246
21/05/2018	206	233	239	209	238	258
01/06/2018	195	230	246	194	239	259
08/06/2018	202	234	250	197	259	266
20/06/2018	210	241	249	202	254	271
10/07/2018	221	254	267	238	268	294
20/07/2018	206	246	271	214	264	288
31/07/2018	214	256	271	212	272	301
10/08/2018	217	253	279	229	276	298
20/08/2018	220	252	279	218	272	297
10/09/2018	244	277	290	247	285	301
20/09/2018	249	276	297	260	294	301
10/10/2018	263	301	290	260	301	301
22/10/2018	271	301	301	277	301	301
09/11/2018	301	301	301	273	301	288
21/11/2018	301	301	301	278	301	295
10/12/2018	301	301	301	294	301	301
24/12/2018	301	301	301	295	301	301

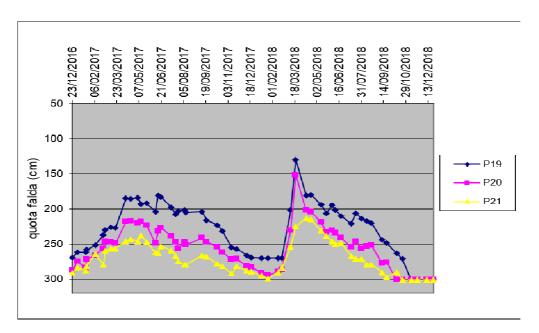


Grafico 9: andamento del livello di falda nell'allineamento di piezometri P19-P20-P21 del sito di S. Felice e secondo i rilievi manuali. Si noti la prevalenza del livello di falda nel P19, posto a 25 m dal canal Torbido, rispetto agli altri due.

SITO POMPOSA

Nel presente sito, contestualmente al livello di falda, è stata anche rilevata la conducibilità elettrica (espressa in μ S/cm) tramite apposito strumento calato all'interno del piezometro. Inoltre, quando possibile, si è effettuata anche la lettura della conducibilità elettrica delle acque nel vicino Po di Volano.

	P7		P8		P9		P10		P11		P12		VOLANO
Data	Cond.	Prof.	Cond.										
22/06/16	3200	126	2030	121			1182	124			4420	90	1912
12/07/16	2800	138	1686	126	1137	115	2180	136	912	48	2870	129	1163
02/08/16	2840	134	1615	96	969	104	4180	124	794	50	2440	130	1207
11/08/16	3120	127	840	25	4330	121	3420	133	1267	119	978	102	1026
24/08/16	1827	103	813	73	3000	60	6450	108	1364	95	1160	94	1215
30/08/16	1822	115	930	25	3050	80	5980	130	1483	110	923	94	1148
14/09/16	2390	138	1020	134			5360	137					1268
04/10/16	1673	117	1284	105	2980	113	5660	124	1811	118	1485	124	2170
18/10/16	6090	90	1660	96	2712	105	4940	94	2340	108	3080	90	
03/11/16	5400	117	1980	115	2560	112	5120	124	2220	124	2170	121	
22/11/16	6120	120	1745	118	2660	119	5440	127	3070	126	3110	124	
07/12/16	3900	100	4200	100	4000	100	5970	100	2700	106	5230	105	
10/01/17	4600	96	3700	98	3600	103	4812	102	2650	108	4500	101	
01/02/17	3100	100	2900	106	1297	105	6200	109	2700	105	1707	105	
09/02/17	3700	98	4850	100	900	101	6100	101	1530	103	830	103	1800
20/02/17	2900	103	2800	104	1420	106	5900	106	3100	102	2020	103	
10/03/17	3050	109	2730	110	1360	109	5850	121	2960	118	2000	118	
17/03/17		120		110		117		125		128		136	
22/03/17	3680	123	2680	123	1636	118	6280	130	3520	129	2030	128	
10/04/17	4030	134	3980	130	3850	130	6340	143	5680	140	3370	140	960
26/04/17	4120	132	3650	134	3620	135	6280	135	5100	138	3420	136	950
22/05/17	975	123	4320	128	5480	124	6120	148	5560	143	4200	143	962
01/06/17	2960	171	2020	169	2240	168	5980	174	4100	174	1312	170	970
23/06/17	3180	174	1940	170	2170	164	6120	173	4800	177	1234	168	975
05/07/17	1200	144	985	143	1573	140	6170	153	4420	155	1415	150	
13/07/17	3280	160	1583	158	1550	150	6590	166	4400	169	2070	160	977
19/07/17							6370	175	2510	176	1870	171	
09/08/17	1460	147	698	144	1845	148	6260	165	876	160	3150	132	974
30/08/17	1510	151	1010	146	2050	151	6120	161	950	158	3190	130	965
14/09/17	1403	130	1810	127	2100	131	6060	122	1660	118	2400	115	
05/10/17	1088	120	3590	118	3230	115	6160	125	3070	125	1375	105	
15/11/17	1478	74	1663	78	1820	87	6150	75	1100	78	1385	58	
21/12/17	1720	116	6370	120	2150	118	6450	128	5200	127	1800	123	4580
11/01/18	2700	116	5850	116	2100	120	6520	121	5380	124	2660	110	
29/01/18	3120	110	4930	113	1970	114	6430	118	4100	111	2230	108	
12/03/18		103		104		102		97		99		97	
23/03/18	878	130	4270	130	4170	125	6180	130	3870	120	2010	130	

Data	P7		P8		P9		P10		P11		P12		VOLANO
19/04/18	1920	118	4110	120	4620	120	6430	120	4100	120	1990	121	
18/05/18	1014	145	5750	145	2350	139	6380	148	3750	148	1882	140	973
28/05/18	1120	140	5810	142	2140	140	6230	145	3660	141	1720	138	968
31/05/18	860	141	3660	140	2570	134	6310	150	4330	149	1990	152	
18/06/18	700	157	5700	157	3000	149	6100	160	4330	160	3270	153	976
04/07/18	3000	150	1000	166	3750	150	6260	159	3035	164	2030	147	866
31/07/18	2500	150	1920	150	3200	140	6100	155	1150	160	2030	130	976
13/08/18	1990	147	2150	148	2700	150	4700	155	1210	149	1970	151	980
03/10/18	2100	153	2660	154	2690	154	4050	151	1330	150	2300	151	978
26/10/18	665	138	5270	138	1651	138	1292	140	695	140	895	139	
12/11/18	673	111	2480	119	1320	112	1180	109	1110	124	1940	125	1810
15/11/18	1980	121	4700	120	2300	120	2100	120	1960	120	3300	120	
04/12/18	2200	106	6300	109	2600	109	2600	109	3500	109	3290	109	
20/12/18	1960	121	5400	119	2850	119	2100	120	2900	120	3120	118	
02/01/19	2050	114	4600	115	3100	115	4200	115	3600	115	3450	110	
17/01/19	2400	130	5190	130	3340	128	4180	133	4450	138	3220	137	

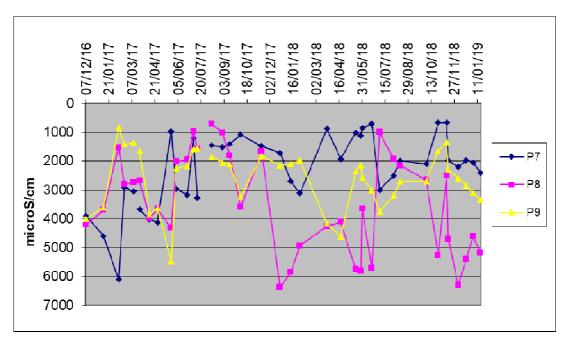


Grafico 10: andamento della conducibilità elettrica nell'allineamento di piezometri P7-P8-P9 del sito di Pomposa e secondo i rilievi strumentali in campo. La conducibilità è tendenzialmente minore nel P7, posto a 25 m dal Po di Volano, il che può rafforzare l'ipotesi che vi sia un contributo di acqua più dolce per infiltrazione da parte del suddetto fiume.

GRAFICI DEI BILANCI IDRICI RIFERITI AI DUE SITI STUDIO S. FELICE S. P. E POMPOSA

ANNO 2017

Nel 2016 i due appezzamenti a pero monitorati all'interno dei due siti studio di S. Felice s. P. e Pomposa sono stati configurati all'interno di IRRINET. Per ogni sito sono stati previsti tre scenari, ciascuno corrispondente alla situazione di falda presente all'interno di un piezometro a distanza crescente dal corso d'acqua prospiciente l'appezzamento. Nel sito di S. Felice s. P. sono stati selezionati i piezometri della sequenza P19, P20 e P21 (rispettivamente a 25, 75 e 150 m dal canale Ramedello), nel sito di Pomposa i piezometri della sequenza P10, P11 e P12 (rispettivamente a 25, 75 e 150 m dal Po di Volano). Nel 2017 e nel 2018, inserendo anche i valori delle rispettive irrigazioni, sono stati effettuati i calcoli del bilancio idrico, i cui risultati sono riportati nelle pagine seguenti. Per il 2017, nell'azienda di S. Felice, la presenza di falda abbastanza superficiale in corrispondenza del P19, abbinata alle irrigazioni, determina una situazione soddisfacente per quanto riquarda l'acqua disponibile (curva decisamente al di sopra della linea rossa della Soglia d'intervento). Nell'azienda di Pomposa, invece, i grafici relativi ad ogni piezometro mostrano un andamento simile, con un sensibile abbassamento della curva sotto la soglia d'intervento a partire da metà luglio fino alla data di raccolta (pero abate - raccolta 07/09/2017). Nel 2018 e per quanto riguarda l'azienda di S. Felice, sono disponibili sia grafici relativi alla coltura irrigata, sia grafici per la parte non irrigata. In entrambe, stante la decisione da parte dell'azienda agricola di irrigare il meno possibile, reputando le precipitazioni precedenti più che sufficienti al fabbisogno delle piante, le curve si pongono molto al di sotto della soglia d'intervento. Minime differenze sussistono fra il P19 e gli altri due piezometri, a causa della falda, lievemente più superficiale nel primo e decisamente molto bassa od assente entro i 3 m negli altri due. Nonostante il quadro prospettato su IrriNet, la produzione del frutteto è stata soddisfacente, come si evince anche dall'All. 21, relativo alla raccolta frutti.

Per quanto riguarda invece l'azienda Pomposa, la curva di umidità del terreno è posizionata poco sotto la soglia d'intervento, in virtù delle numerose irrigazioni effettuate già a partire da maggio per scongiurare la risalita della falda salina conseguente l'annata notevolmente siccitosa.

Sito studio S. Felice s. P. - Anno 2017

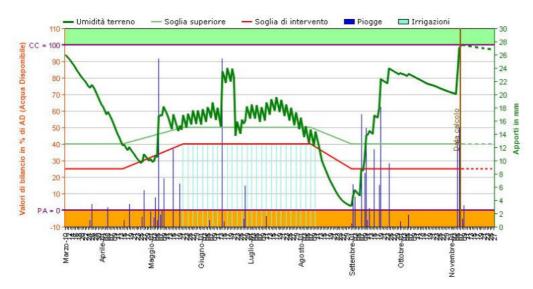


Grafico 11: Bilancio idrico 2017 riferito alla simulazione sull'azienda di S. Felice s. P. - piezometro P19, posto a 25 m dal canale Ramedello.

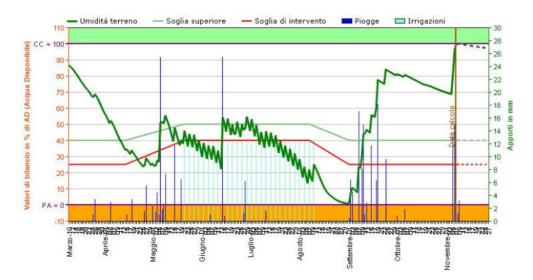


Grafico 12: Bilancio idrico 2017 riferito alla simulazione sull'azienda di S. Felice s. P. - piezometro P20, posto a 75 m dal canale Ramedello.

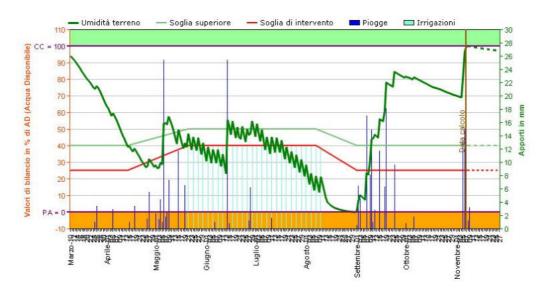


Grafico 13: Bilancio idrico 2017 riferito alla simulazione sull'azienda di S. Felice s. P. - piezometro P21, posto a 150 m dal canale Ramedello.

Sito studio S. Felice s. P. - Anno 2018



Grafico 14: Bilancio idrico 2018 riferito alla simulazione sull'azienda di S. Felice s. P. - piezometro P19, posto a 25 m dal canale Ramedello - IRRIGATO.

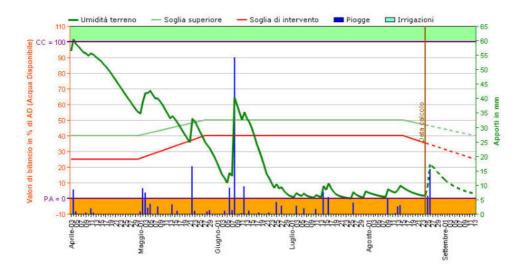


Grafico 15: Bilancio idrico 2018 riferito alla simulazione sull'azienda di S. Felice s. P. - piezometro P19, posto a 25 m dal canale Ramedello – NON IRRIGATO.

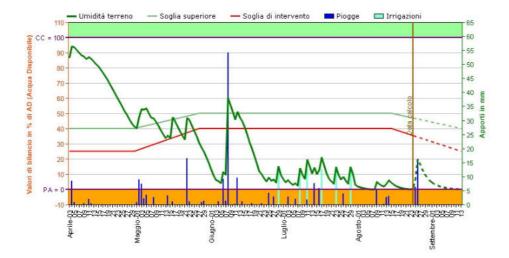


Grafico 16: Bilancio idrico 2018 riferito alla simulazione sull'azienda di S. Felice s. P. - piezometro P20, posto a 75 m dal canale Ramedello - IRRIGATO.

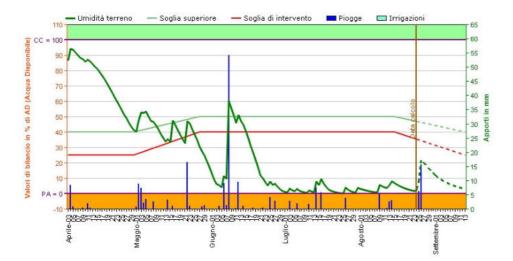


Grafico 17: Bilancio idrico 2018 riferito alla simulazione sull'azienda di S. Felice s. P. - piezometro P20, posto a 75 m dal canale Ramedello – NON IRRIGATO.

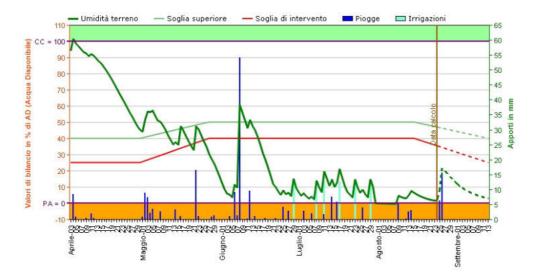


Grafico 18: Bilancio idrico 2018 riferito alla simulazione sull'azienda di S. Felice s. P. - piezometro P21, posto a 75 m dal canale Ramedello - IRRIGATO.

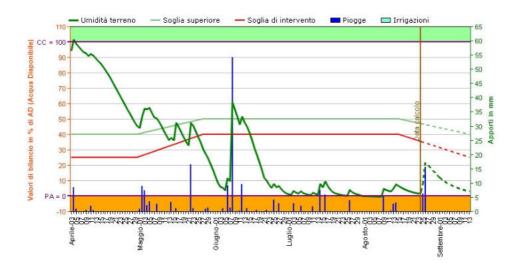


Grafico 19: Bilancio idrico 2018 riferito alla simulazione sull'azienda di S. Felice s. P. - piezometro P21, posto a 75 m dal canale Ramedello – NON IRRIGATO.

Sito studio Pomposa - Anno 2017

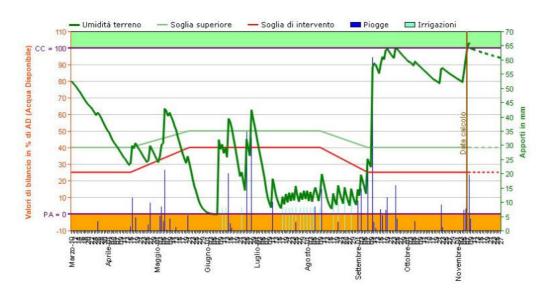


Grafico 20: Bilancio idrico 2017 riferito alla simulazione sull'azienda di Pomposa. - piezometro P10, posto a 25 m dal Po di Volano.

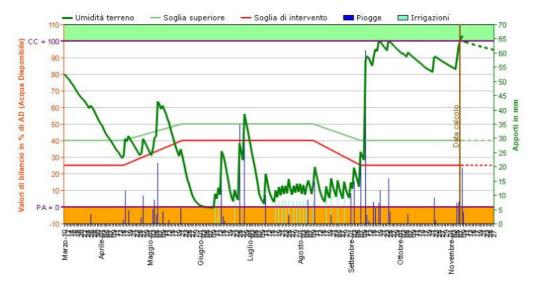


Grafico 21: Bilancio idrico 2017 riferito alla simulazione sull'azienda di Pomposa. - piezometro P11, posto a 75 m dal Po di Volano.

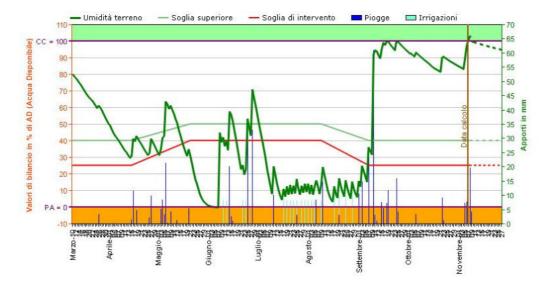


Grafico 22: Bilancio idrico 2017 riferito alla simulazione sull'azienda di Pomposa. - piezometro P12, posto a 150 m dal Po di Volano.

Sito studio Pomposa - Anno 2018

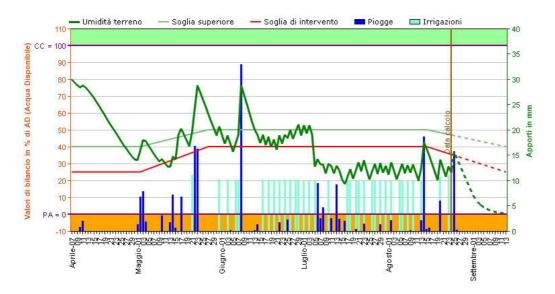


Grafico 23: Bilancio idrico 2018 riferito alla simulazione sull'azienda di Pomposa. - piezometro P10, posto a 25 m dal Po di Volano.

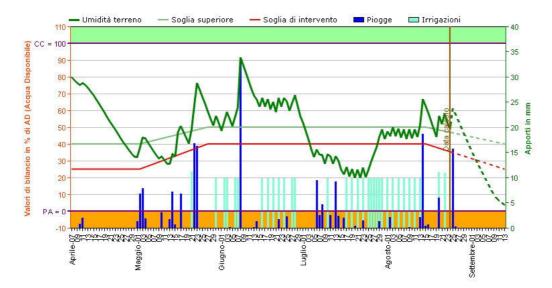


Grafico 24: Bilancio idrico 2018 riferito alla simulazione sull'azienda di Pomposa. - piezometro P11, posto a 75 m dal Po di Volano.

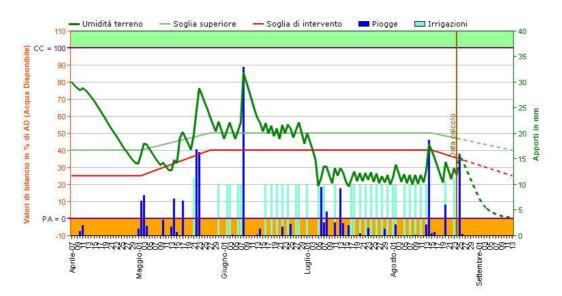


Grafico 25: Bilancio idrico 2018 riferito alla simulazione sull'azienda di Pomposa. - piezometro P12, posto a 150 m dal Po di Volano.

CAMPIONAMENTO DEGLI ORIZZONTI DI SUOLO PER LA DETERMINAZIONE DEL CONTENUTO IDRICO

Nei due siti di Pomposa e S. Felice sono stati effettuati ogni anno 3⁴ campionamenti del suolo durante la stagione irrigua per determinarne la % di acqua contenuta al fine di ottenere dati a supporto delle successive operazioni di monitoraggio (per es. EM38, rilievo IR) e del calcolo del bilancio idrico di IrriNet. I campioni di terreno raccolti, sono stati sigillati in sacchetti di polietilene, inviati al laboratorio CER e seccati in stufa alla temperatura di 105°. Per ogni sito e all'inizio di ogni anno è determinata, in prossimità di ciascun piezometro, la tessitura del suolo, sia nell'orizzonte superficiale che in quello profondo.

Per quanto riguarda il sito di S. Felice, a partire dal 2017, sono stati effettuati campionamenti separati della parte di suolo irrigata e di quella non irrigata, giungendo, nel solo 2018, al raddoppio del numero di campioni previsti (nel 2017 il numero era stato mantenuto inalterato, campionando solo uno dei due allineamenti di piezometri).

POMPOSA - ANNO 2016

Sito	Data	Piezometro	Profondità	% Umidità	% Sabbia stima	% Argilla stima
Pomposa	02/08/2016	7	25-30	13,36	24	5
Pomposa	02/08/2016		50-60	20,66	29	5
Pomposa	02/08/2016	8	25-30	12,14	32	10
Pomposa	02/08/2016		50-60	17,53	36	15
Pomposa	02/08/2016	9	25-30	18,89	29	25
Pomposa	02/08/2016		50-60	17,44	38	21
Pomposa	02/08/2016	10	25-30	12,96	29	10
Pomposa	02/08/2016		50-60	15,91	24	5
Pomposa	02/08/2016	11	25-30	16,56	33	10
Pomposa	02/08/2016		50-60	19,14	16	15
Pomposa	02/08/2016	12	25-30	19,39	33	21
Pomposa	02/08/2016		50-60	22,62	12	35
Pomposa	31/08/2016	7	25-30	14,32	24	5
Pomposa	31/08/2016		50-60	19,83	29	5
Pomposa	31/08/2016	8	25-30	13,00	32	10
Pomposa	31/08/2016		50-60	14,00	36	15
Pomposa	31/08/2016	9	25-30	20,51	29	25
Pomposa	31/08/2016		50-60	18,21	38	21
Pomposa	31/08/2016	10	25-30	17,06	29	10
Pomposa	31/08/2016		50-60	20,38	24	5
Pomposa	31/08/2016	11	25-30	17,84	33	10
Pomposa	31/08/2016		50-60	20,24	16	15
Pomposa	31/08/2016	12	25-30	15,81	33	21
Pomposa	31/08/2016		50-60	19,51	12	35

⁴ In realtà nel 2016 ne furono effettuati solo due, a causa dei tempi necessari alla sistemazione della strumentazione di rilievo nei siti individuati, sicché il monitoraggio vero e proprio poté iniziare solo a luglio 2016.

POMPOSA - ANNO 2017

Sito	Data	Piezometro	Profondità (cm)	% Umidità	% Sabbia stima	% Argilla stima
Pomposa	21/04/2017	7	25-30	19,74	26	10
Pomposa	21/04/2017		50-60	19,99	31	15
Pomposa	21/04/2017	8	25-30	19,10	29	5
Pomposa	21/04/2017		50-60	21,52	32	10
Pomposa	21/04/2017	9	25-30	18,43	24	18
Pomposa	21/04/2017		50-60	19,38	27	20
Pomposa	21/04/2017	10	25-30	17,07	30	10
Pomposa	21/04/2017		50-60	17,39	31	15
Pomposa	21/04/2017	11	25-30	18,54	34	5
Pomposa	21/04/2017		50-60	20,14	22	15
Pomposa	21/04/2017	12	25-30	19,40	34	5
Pomposa	21/04/2017		50-60	19,28	26	20
Pomposa	05/07/2017	7	25-30	16,73	26	10
Pomposa	05/07/2017		50-60	16,27	31	15
Pomposa	05/07/2017	8	25-30	12,42	29	5
Pomposa	05/07/2017		50-60	19,75	32	10
Pomposa	05/07/2017	9	25-30	17,14	24	18
Pomposa	05/07/2017		50-60	15,82	27	20
Pomposa	05/07/2017	10	25-30	13,90	30	10
Pomposa	05/07/2017		50-60	15,50	31	15
Pomposa	05/07/2017	11	25-30	13,61	34	5
Pomposa	05/07/2017		50-60	13,82	22	15
Pomposa	05/07/2017	12	25-30	17,41	34	5
Pomposa	05/07/2017		50-60	18,65	26	20
Pomposa	09/08/2017	7	25-30	17,23	26	10
Pomposa	09/08/2017		50-60	13,60	31	15
Pomposa	09/08/2017	8	25-30	13,08	29	5
Pomposa	09/08/2017		50-60	19,98	32	10
Pomposa	09/08/2017	9	25-30	18,36	24	18
Pomposa	09/08/2017		50-60	18,06	27	20
Pomposa	09/08/2017	10	25-30	18,83	30	10
Pomposa	09/08/2017		50-60	19,21	31	15
Pomposa	09/08/2017	11	25-30	18,22	34	5
Pomposa	09/08/2017		50-60	20,19	22	15
Pomposa	09/08/2017	12	25-30	17,18	34	5
Pomposa	09/08/2017		50-60	20,79	26	20

POMPOSA - ANNO 2018

Sito	Data	Piezometro	Profondità (cm)	% Umidità	% Sabbia stima	% Argilla stima
Pomposa	31/05/2018	7	25-30	11,54	25	10
Pomposa			50-60	14,87	24	5
Pomposa		8	25-30	15,10	33	15
Pomposa			50-60	17,97	36	10
Pomposa	31/05/2018	9	25-30	16,36	34	21
Pomposa			50-60	15,39	39	19
Pomposa	31/05/2018	10	25-30	12,60	37	11
Pomposa	31/05/2018		50-60	12,79	32	8
Pomposa	31/05/2018	11	25-30	10,97	31	11
Pomposa	31/05/2018		50-60	13,49	29	6
Pomposa	31/05/2018	12	25-30	15,02	41	12
Pomposa	31/05/2018		50-60	13,86	26	21
Pomposa	05/07/2018	7	25-30	17,49	25	10
Pomposa	05/07/2018		50-60	15,85	24	5
Pomposa	05/07/2018	8	25-30	14,98	33	15
Pomposa	05/07/2018		50-60	18,08	36	10
Pomposa	05/07/2018	9	25-30	11,84	34	21
Pomposa	05/07/2018		50-60	12,06	39	19
Pomposa	05/07/2018	10	25-30	18,15	37	11
Pomposa	05/07/2018		50-60	21,43	32	8
Pomposa	05/07/2018	11	25-30	20,36	31	11
Pomposa	05/07/2018		50-60	19,69	29	6
Pomposa	05/07/2018	12	25-30	16,67	41	12
Pomposa	05/07/2018		50-60	15,58	26	21
Pomposa	01/08/2018	7	25-30	16,71	25	10
Pomposa	01/08/2018		50-60	15,59	24	5
Pomposa	01/08/2018	8	25-30	15,48	33	15
Pomposa	01/08/2018		50-60	18,90	36	10
Pomposa	01/08/2018	9	25-30	15,54	34	21
Pomposa	01/08/2018		50-60	18,09	39	19
Pomposa	01/08/2018	10	25-30	12,02	37	11
Pomposa	01/08/2018		50-60	12,29	32	8
Pomposa	01/08/2018	11	25-30	15,21	31	11
Pomposa	01/08/2018		50-60	17,71	29	6
Pomposa	01/08/2018	12	25-30	16,80	41	12
Pomposa	01/08/2018		50-60	20,30	26	21

S. FELICE - ANNO 2016

Sito	Data	Piezometro	Profondità (cm)	% Umidità	% Sabbia stima	% Argilla stima
S. Felice	04/08/2016	19	25-30	11,62	24	21
S. Felice	04/08/2016		50-60	10,53	22	26
S. Felice	04/08/2016	20	25-30	12,79	32	25
S. Felice	04/08/2016		50-60	12,80	21	30
S. Felice	04/08/2016	21	25-30	13,92	34	15
S. Felice	04/08/2016		50-60	14,94	37	15
S. Felice	04/08/2016	22	25-30	12,95	31	26
S. Felice	04/08/2016		50-60	17,71	29	10
S. Felice	04/08/2016	23	25-30	11,78	26	21
S. Felice	04/08/2016		50-60	14,42	19	28
S. Felice	04/08/2016	24	25-30	13,21	33	10
S. Felice	04/08/2016		50-60	15,72	36	10
S. Felice	26/08/2016	19	25-30	13,78	24	21
S. Felice	26/08/2016		50-60	15,36	22	26
S. Felice	26/08/2016	20	25-30	15,31	32	25
S. Felice	26/08/2016		50-60	15,62	21	30
S. Felice	26/08/2016	21	25-30	16,03	34	15
S. Felice	26/08/2016		50-60	16,73	37	15
S. Felice	26/08/2016	22	25-30	14,71	31	26
S. Felice	26/08/2016		50-60	17,78	29	10
S. Felice	26/08/2016	23	25-30	13,95	26	21
S. Felice	26/08/2016		50-60	15,29	19	28
S. Felice	26/08/2016	24	25-30	15,60	33	10
S. Felice	26/08/2016		50-60	15,38	36	10

S. FELICE - ANNO 2017

Sito	Data	Piezometro	Profondità (cm)	% Umidità	% Sabbia stima	% Argilla stima
S. Felice	04/05/2017	19	25-30	13,39	30	21
S. Felice	04/05/2017		50-60	17,05	23	35
S. Felice	04/05/2017	20	25-30	14,25	33	30
S. Felice	04/05/2017		50-60	15,28	21	30
S. Felice	04/05/2017	21	25-30	15,89	36	16
S. Felice	04/05/2017		50-60	16,09	27	21
S. Felice	04/05/2017	22	25-30	16,52	33	15
S. Felice	04/05/2017		50-60	20,45	22	12
S. Felice	04/05/2017	23	25-30	13,91	27	15
S. Felice	04/05/2017		50-60	15,67	34	15
S. Felice	04/05/2017	24	25-30	15,67	34	18
S. Felice	04/05/2017		50-60	15,79	29	25
S. Felice	25/07/2017	19	25-30	11,45	26	18
S. Felice	25/07/2017	Irriguo	50-60	15,45	19	30
S. Felice	25/07/2017	19	25-30	11,07	29	15
S. Felice	25/07/2017	No irriguo	50-60	11,67	33	15
S. Felice	25/07/2017	20	25-30	14,89	36	20
S. Felice	25/07/2017	Irriguo	50-60	15,96	21	40
S. Felice	25/07/2017	20	25-30	12,34	33	25
S. Felice	25/07/2017	No irriguo	50-60	11,44	29	40
S. Felice	25/07/2017	21	25-30	14,47	36	15
S. Felice	25/07/2017	Irriguo	50-60	17,26	29	20
S. Felice	25/07/2017	21	25-30	11,83	35	12
S. Felice	25/07/2017	No irriguo	50-60	11,56	27	25
S. Felice	07/08/2017	22	25-30	12,60	33	22
S. Felice	07/08/2017	Irriguo	50-60	13,26	22	20
S. Felice	07/08/2017	22	25-30	13,18	29	25
S. Felice	07/08/2017	No irriguo	50-60	19,30	34	21
S. Felice	07/08/2017	23	25-30	11,42	30	25
S. Felice	07/08/2017	Irriguo	50-60	12,54	27	18
S. Felice	07/08/2017	23	25-30	14,16	32	21
S. Felice	07/08/2017	No irriguo	50-60	16,09	34	30
S. Felice	07/08/2017	24	25-30	13,76	30	20
S. Felice	07/08/2017	Irriguo	50-60	12,49	26	21
S. Felice	07/08/2017	24	25-30	15,72	25	21
S. Felice	07/08/2017	No irriguo	50-60	17,19	24	21

S. FELICE - ANNO 2018

					%	%
Sito	Data	Piezometro	Profondità (cm)	% Umidità	Sabbia stima	Argilla stima
S. Felice	01/06/2018	19	25-30	11,97	30	21
S. Felice	01/06/2018		50-60	17,25	23	35
S. Felice	01/06/2018	20	25-30	12,28	33	30
S. Felice	01/06/2018		50-60	13,34	21	30
S. Felice	01/06/2018	21	25-30	12,02	36	16
S. Felice	01/06/2018		50-60	12,06	27	21
S. Felice	01/06/2018	22	25-30	12,59	33	15
S. Felice	01/06/2018		50-60	16,45	22	12
S. Felice	01/06/2018	23	25-30	11,00	27	15
S. Felice	01/06/2018		50-60	15,92	34	15
S. Felice	01/06/2018	24	25-30	11,78	34	18
S. Felice	01/06/2018		50-60	11,83	29	25
S. Felice	04/07/2018	19	25-30	15,90	30	21
S. Felice	04/07/2018	Irriguo	50-60	17,19	23	35
S. Felice	04/07/2018	20	25-30	14,62	33	30
S. Felice	04/07/2018	Irriguo	50-60	16,46	21	30
S. Felice	04/07/2018	21	25-30	14,98	36	16
S. Felice	04/07/2018	Irriguo	50-60	16,39	27	21
S. Felice	04/07/2018	22	25-30	14,29	33	15
S. Felice	04/07/2018	Irriguo	50-60	18,79	22	12
S. Felice	04/07/2018	23	25-30	13,21	27	15
S. Felice	04/07/2018	Irriguo	50-60	16,78	34	15
S. Felice	04/07/2018	24	25-30	14,60	34	18
S. Felice	04/07/2018	Irriguo	50-60	16,87	29	25
S. Felice	04/07/2018	19	25-30	11,60	30	21
S. Felice	04/07/2018	No irriguo	50-60	15,37	23	35
S. Felice	04/07/2018	20	25-30	12,53	33	30
S. Felice	04/07/2018	No irriguo	50-60	12,68	21	30
S. Felice	04/07/2018	21	25-30	12,90	36	16
S. Felice	04/07/2018	No irriguo	50-60	12,96	27	21
S. Felice	04/07/2018	22	25-30	14,11	33	15
S. Felice	04/07/2018	No irriguo	50-60	15,68	22	12
S. Felice	04/07/2018	23	25-30	13,10	27	15
S. Felice	04/07/2018	No irriguo	50-60	15,98	34	15
S. Felice	04/07/2018	24	25-30	13,13	34	18
S. Felice	04/07/2018	No irriguo	50-60	12,98	29	25

Sito	Data	Piezometro	Profondità (cm)	% Umidità	% Sabbia stima	% Argilla stima
S. Felice	31/07/2018	19	25-30	16,06	30	21
S. Felice	31/07/2018	Irriguo	50-60	18,38	23	35
S. Felice	31/07/2018	20	25-30	16,20	33	30
S. Felice	31/07/2018	Irriguo	50-60	15,85	21	30
S. Felice	31/07/2018	21	25-30	15,17	36	16
S. Felice	31/07/2018	Irriguo	50-60	17,14	27	21
S. Felice	31/07/2018	22	25-30	19,22	33	15
S. Felice	31/07/2018	Irriguo	50-60	20,46	22	12
S. Felice	31/07/2018	23	25-30	17,49	27	15
S. Felice	31/07/2018	Irriguo	50-60	17,85	34	15
S. Felice	31/07/2018	24	25-30	18,73	34	18
S. Felice	31/07/2018	Irriguo	50-60	18,20	29	25
S. Felice	31/07/2018	19	25-30	12,15	30	21
S. Felice	31/07/2018	No irriguo	50-60	15,86	23	35
S. Felice	31/07/2018	20	25-30	11,87	33	30
S. Felice	31/07/2018	No irriguo	50-60	12,75	21	30
S. Felice	31/07/2018	21	25-30	11,46	36	16
S. Felice	31/07/2018	No irriguo	50-60	11,84	27	21
S. Felice	31/07/2018	22	25-30	13,33	33	15
S. Felice	31/07/2018	No irriguo	50-60	13,57	22	12
S. Felice	31/07/2018	23	25-30	12,32	27	15
S. Felice	31/07/2018	No irriguo	50-60	12,73	34	15
S. Felice	31/07/2018	24	25-30	12,63	34	18
S. Felice	31/07/2018	No irriguo	50-60	12,04	29	25

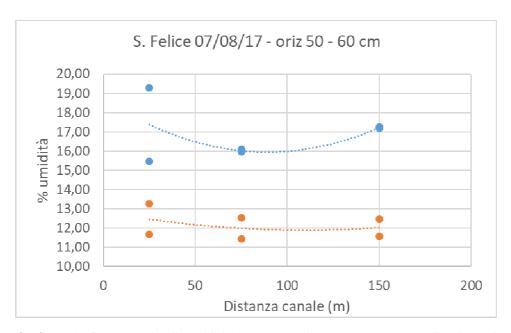


Grafico 26: Percentuale di umidità riscontrata il 7 agosto 2017 negli orizzonti profondi in prossimità dei piezometri del sito di S. Felice. In blu, la situazione in prossimità delle piante irrigate; in rosso, in prossimità delle piante soggette a bypass dall'irrigazione.

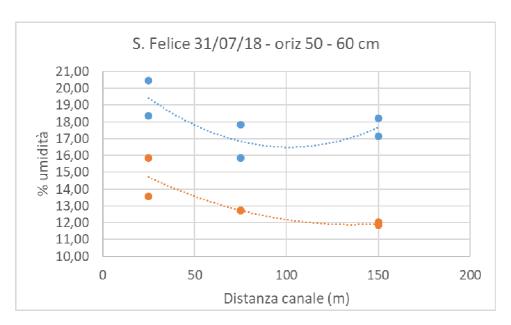


Grafico 27: Percentuale di umidità riscontrata il 31 agosto 2018 negli orizzonti profondi in prossimità dei piezometri del sito di S. Felice. In blu, la situazione in prossimità delle piante irrigate; in rosso, in prossimità delle piante soggette a bypass dall'irrigazione.

I grafici mostrano, per i due anni 2017 e 2018, la differenza di contenuto idrico negli orizzonti profondi del suolo, rispettivamente in prossimità dei peri irrigati e dei peri non irrigati. Essa si assesta, in entrambi gli anni e a stagione conclusa, attorno al 5%. Ma l'aspetto più importante riguarda l'andamento delle curve interpolate, in relazione alla distanza dal canale Ramedello. Si nota infatti, e solo presso le piante non irrigate, una regolare diminuzione del contenuto idrico nel suolo all'aumentare della distanza; esso è appena percepibile nel siccitoso 2017, mentre risulta ben evidente nel 2018.

RILIEVI DI TEMPERATURA FOGLIARE TRAMITE STRUMENTO ALL'INFRAROSSO "SCHEDULER" (TABELLE E GRAFICI)

Anno: 2016

Sito studio: Pomposa

Coltura: Pero Abate

Data	Piezom etro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
02/08/16	P7	25	134	27,3	27,5	-0,2	54	51	1,68	1,4
02/08/16	P8	75	96	28,9	28,5	0,4	56	52	1,71	2,1
02/08/16	P9	150	104	28,0	28,8	-0,8	56	50	1,73	0,9
02/08/16	P10	25	124	26,1	28,7	-2,6	50	39	1,96	-0,6
02/08/16	P11	75	50	28,2	29,1	-0,9	53	60	1,88	0,9
02/08/16	P12	150	130	26,5	28,9	-2,4	51	55	1,92	-0,4
	Medie			27,5	28,6	-1,1	53,3	51,2	1,8	0,7

Data	Piezom etro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
31/08/16	P7	25	115	29,8	29,1	0,7	52	55	1,91	2,7
31/08/16	P8	75	25	30,7	29,2	1,5	53	51	1,90	3,3
31/08/16	P9	150	80	30,5	29,4	1,1	49	48	2,08	3,1
31/08/16	P10	25	130	28,1	28,6	-0,5	48	51	2,02	1,5
31/08/16	P11	75	110	32,7	30,0	2,7	49	54	2,15	4,8
31/08/16	P12	150	90	28,3	30,1	-1,8	49	51	2,16	0,4
	Medie			30,0	29,4	0,6	50,0	51,7	2,0	2,6

Nota: Valori in rosso nella colonna "Profondità falda" legati a ristagno di acqua irrigua all'interno del pozzetto a protezione del piezometro e quindi da considerarsi non realistici

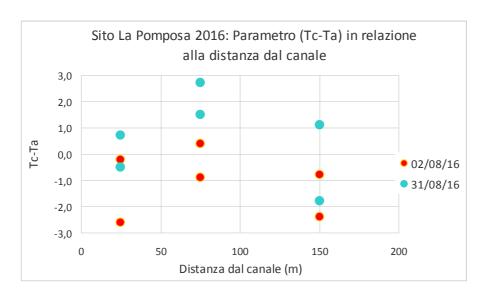


Grafico 28: Confronto 2016 fra il parametro calcolato Tc-Ta e la distanza dal canale nel sito di Pomposa durante le due date di rilievi

Sito studio: Pomposa

Coltura: Pero Abate

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
05/07/17	P7	25	144	28,7	28,5	0,2	53	67	1,83	2,1
05/07/17	P8	75	143	29,6	29,2	0,4	48	66	2,10	2,5
05/07/17	P9	150	140	29,0	29,3	-0,3	49	67	2,05	1,8
05/07/17	P10	25	153	29,3	29,4	-0,1	48	66	2,12	2,0
05/07/17	P11	75	155	29,9	29,7	0,1	47	67	2,18	2,3
05/07/17	P12	150	150	29,4	29,9	-0,5	49	72	2,16	1,5
	Medie			29,3	29,3	0,0	48,8	67,1	2,1	2,0

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	cwsi
19/07/17	P7	25	160	30,2	30,9	-0,7	60	55	1,74	1,0
19/07/17	P8	75	158	31,5	30,6	0,9	61	58	1,71	2,6
19/07/17	P9	150	150	30,6	30,7	-0,1	62	59	1,68	1,6
19/07/17	P10	25	166	28,8	29,6	-0,9	61	51	1,62	0,8
19/07/17	P11	75	169	30,8	31,4	-0,7	57	54	1,94	1,3
19/07/17	P12	150	160	30,3	31,1	-0,9	58	60	1,90	1,0
	Medie			30,3	30,7	-0,4	59,6	56,0	1,8	1,4

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
09/08/17	P7	25	147	33,5	33,3	0,2	52	52	2,44	2,5
09/08/17	P8	75	144	34,6	34,1	0,5	48	58	2,75	3,0
09/08/17	P9	150	148	33,1	34,5	-1,4	49	51	2,75	1,2
09/08/17	P10	25	165	33,5	34,6	-1,1	49	55	2,76	1,6
09/08/17	P11	75	160	34,5	35,0	-0,5	50	56	2,77	2,1
09/08/17	P12	150	132	34,6	35,2	-0,6	52	55	2,69	2,0
	Medie			34,0	34,5	-0,5	50,0	54,5	2,7	2,1

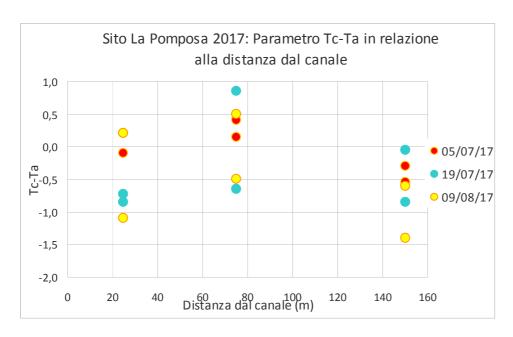


Grafico 29: Confronto 2017 fra il parametro calcolato Tc-Ta e la distanza dal canale nel sito di Pomposa durante le tre date di rilievi

Sito studio: Pomposa

Coltura: Pero Abate

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
05/07/18	P7	25	150	31,2	31,3	-0,1	58	57	1,88	1,7
05/07/18	P8	75	166	32,3	32,2	0,1	55	57	2,17	2,2
05/07/18	P9	150	150	31,6	32,5	-0,9	54	55	2,22	1,3
05/07/18	P10	25	159	27,2	29,7	-2,5	63	24	1,52	-0,9
05/07/18	P11	75	164	29,5	31,1	-1,6	62	32	1,69	0,1
05/07/18	P12	150	147	26,5	29,9	-3,4	63	13	1,54	-1,8
	Medie			29,7	31,1	-1,4	59,0	39,8	1,8	0,4

Data	piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
01/08/18	P7	25	150	34,0	33,8	0,2	56	57	2,32	2,4
01/08/18	P8	75	150	34,9	34,8	0,1	55	56	2,49	2,4
01/08/18	P9	150	140	34,9	35,3	-0,4	55	58	2,58	2,0
01/08/18	P10	25	155	35,0	34,8	0,2	57	56	2,36	2,4
01/08/18	P11	75	160	35,5	35,8	-0,3	55	54	2,60	2,1
01/08/18	P12	150	130	34,1	35,3	-1,2	49	56	2,88	1,5
	Medie			34,7	35,0	-0,2	54,3	56,0	2,5	2,1

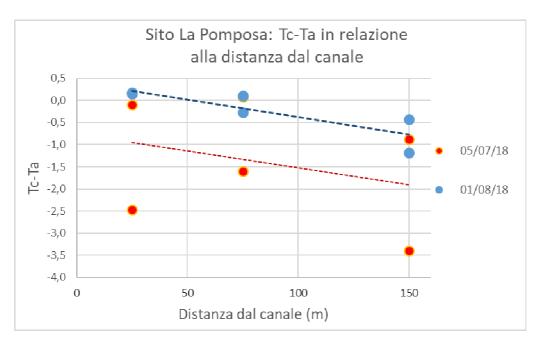


Grafico 30: Confronto 2018 fra il parametro calcolato Tc-Ta e la distanza dal canale nel sito di Pomposa durante le due date di rilievi

Sito studio: S. Felice
Coltura: Pero Williams

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
04/08/16	P19	25	212	31,3	31,5	-0,2	53	45	2,14	1,9
04/08/16	P20	75	246	30,9	32,3	-1,4	54	70	2,22	0,7
04/08/16	P21	150	250	31,0	32,6	-1,6	50	53	2,41	0,8
04/08/16	P22	25	214	31,6	33,5	-1,9	45	56	2,83	0,9
04/08/16	P23	75	267	31,7	33,2	-1,5	42	64	2,90	1,3
04/08/16	P24	150	301	31,3	34,0	-2,7	40	64	3,16	0,4
	Medie			31,3	32,9	-1,6	47,3	58,7	2,6	1,0

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
26/08/16	P19	25	210	30,6	30,8	-0,2	38	63	2,73	2,4
26/08/16	P20	75	254	29,4	30,3	-0,9	39	66	2,62	1,5
26/08/16	P21	150	264	28,9	29,6	-0,7	38	72	2,55	1,7
26/08/16	P22	25	210	30,4	30,3	0,1	41	67	2,51	2,5
26/08/16	P23	75	252	30,7	30,3	0,4	42	67	2,50	2,8
26/08/16	P24	150	274	29,8	30,0	-0,2	45	55	2,30	2,0
	Medie	·		30,0	30,2	-0,3	40,5	65,0	2,5	2,2

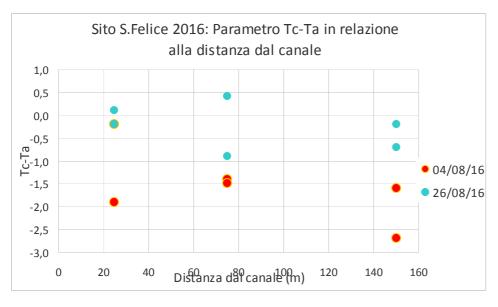


Grafico 31: Confronto 2016 fra il parametro calcolato Tc-Ta e la distanza dal canale nel sito di S. Felice durante le due date di rilievi

Sito studio: S. Felice
Coltura: Pero Williams

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
	P19 non									
14/06/2017	irri	25	181	28,3	30,2	-2,0	63	58	1,58	-0,4
	P20 non									
14/06/2017	irri	75	232	27,4	29,4	-2,0	63	58	1,51	-0,4
	P21 non									
14/06/2017	irri	150	263	27,3	28,8	-1,5	67	48	1,27	-0,2
14/06/2017	P19	25	181	29,2	30,5	-1,3	65	71	1,53	0,3
14/06/2017	P20	75	232	26,9	29,7	-2,8	63	52	1,54	-1,3
14/06/2017	P21	150	263	27,5	29,0	-1,6	65	65	1,39	-0,2
	Medie	·	·	27,7	29,6	-1,9	64,0	58,5	1,5	-0,3

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
	P19 non									
25/07/2017	irri	25	203	29,7	31,3	-1,7	36	67	2,94	1,1
	P20 non									
25/07/2017	irri	75	256	28,6	30,7	-2,2	35	63	2,85	0,6
	P21 non									
25/07/2017	irri	150	275	29,1	31,3	-2,2	35	61	2,96	0,7
	P22 non									
25/07/2017	irri	25	213	28,5	31,4	-2,9	34	53	3,04	0,0
	P23 non									
25/07/2017	irri	75	276	29,5	32,0	-2,5	33	61	3,18	0,5
	P24 non									
25/07/2017	irri	150	301	29,3	32,1	-2,8	33	56	3,19	0,4
25/07/2017	P19	25	203	29,3	31,1	-1,8	37	56	2,86	1,0
25/07/2017	P20	75	256	28,8	31,1	-2,3	36	58	2,86	0,6
25/07/2017	P21	150	275	30,1	32,0	-1,9	36	57	3,03	1,0
25/07/2017	P22	25	213	28,5	31,2	-2,7	35	65	2,96	0,3
25/07/2017	P23	75	276	29,5	31,7	-2,2	33	54	3,12	0,8
25/07/2017	P24	150	301	29,4	31,0	-1,6	36	57	2,87	1,2
	Medie			29,2	31,4	-2,2	34,7	58,7	3,0	0,7

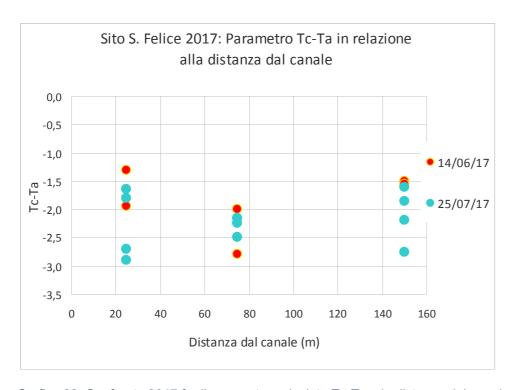


Grafico 32: Confronto 2017 fra il parametro calcolato Tc-Ta e la distanza dal canale nel sito di S. Felice durante le due date di rilievi

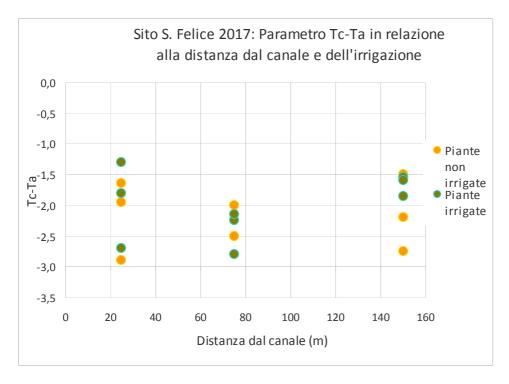


Grafico 33: Grafico analogo al precedente, ma inserendo come variabile anche il confronto fra piante irrigate e non irrigate.

Sito studio: S. Felice
Coltura: Pero Williams

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
04/07/18	P19 non irri	25	221	30,6	30,5	0,1	56	61	1,91	2,0
04/07/18	P20 non irri	75	254	31,3	31,4	-0,1	57	64	1,96	1,9
04/07/18	P21 non irri	150	267	30,4	31,7	-1,3	56	72	2,05	0,8
04/07/18	P22 non irri	25	238	31,2	31,8	-0,6	53	64	2,22	1,6
04/07/18	P23 non irri	75	268	31,3	31,5	-0,2	54	62	2,12	1,9
04/07/18	P24 non irri	150	294	31,6	31,7	-0,2	55	57	2,11	1,9
04/07/18	P19	25	221	30,2	31,2	-1,1	53	64	2,15	1,1
04/07/18	P20	75	254	30,8	31,3	-0,4	55	69	2,06	1,6
04/07/18	P21	150	267	30,2	31,6	-1,4	53	62	2,14	0,7
04/07/18	P22	25	238	30,3	31,7	-1,5	50	70	2,35	0,8
04/07/18	P23	75	268	31,7	32,3	-0,6	52	65	2,28	1,7
04/07/18	P24	150	294	31,6	31,5	0,1	55	63	2,04	2,1
	Medie			30,9	31,5	-0,6	53,8	64,3	2,1	1,5

Data	Piezometro	Distanza canale	Profond. falda	Tc (°C)	Ta (°C)	Tc-Ta (°C)	RH (%)	Rad (%)	VPD (kpa)	CWSI
31/07/18	P19 non irri	25	214	33,1	33,5	-0,4	58	64	2,17	1,7
31/07/18	P20 non irri	75	256	33,1	34,8	-1,7	56	58	2,43	0,7
31/07/18	P21 non irri	150	271	33,1	35,3	-2,2	51	55	2,78	0,5
31/07/18	P22 non irri	25	212	34,1	35,1	-1,0	58	57	2,37	1,3
31/07/18	P23 non irri	75	272	35,3	35,0	0,3	57	62	2,42	2,6
31/07/18	P24 non irri	150	301	33,9	35,1	-1,2	53	59	2,63	1,4
31/07/18	P19	25	214	32,7	34,5	-1,8	56	52	2,39	0,5
31/07/18	P20	75	256	33,4	34,8	-1,4	50	54	2,78	1,2
31/07/18	P21	150	271	34,7	35,2	-0,5	56	62	2,52	1,9
31/07/18	P22	25	212	35,4	34,9	0,5	56	58	2,44	2,8
31/07/18	P23	75	272	34,0	35,0	-1,1	56	53	2,45	1,3
31/07/18	P24	150	301	35,3	35,6	-0,3	53	57	2,71	2,2
	Medie	·		34,0	34,9	-0,9	54,8	57,4	2,5	1,5

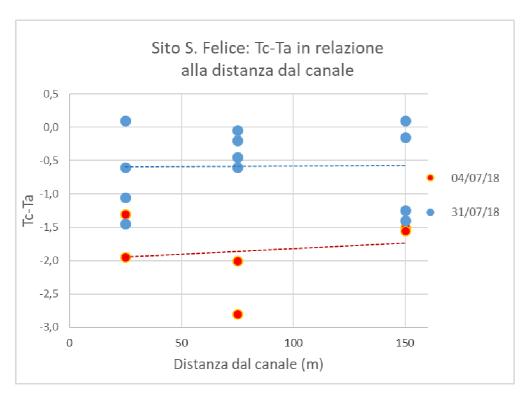


Grafico 34: Confronto 2018 fra il parametro calcolato Tc-Ta e la distanza dal canale nel sito di S. Felice durante le due date di rilievi

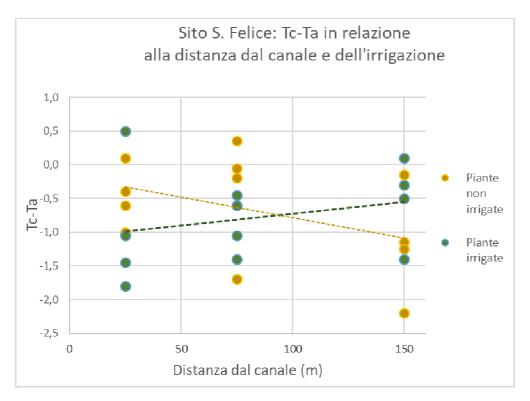


Grafico 35: Grafico analogo al precedente, ma inserendo come variabile anche il confronto fra piante irrigate e non irrigate.

GRAFICI DI RIPARTIZIONE DEI PESI E CALIBRO DEI FRUTTI RACCOLTI NEI DUE SITI DI POMPOSA E S. FELICE.

Nota: I frutti nelle due annate 2016 e 2017 sono stati raccolti secondo un metodo definito in fase progettuale e riportato nella parte iniziale di All. 26 (raccolta su branche di un filare per lunghezza complessiva 3,80 m ed altezza 60 cm); nel 2018, invece, secondo il metodo definito sempre in All. 26, ma in fondo (raccolta su 2 piante intere in corrispondenza di ogni piezometro).

Anno: 2016

Sito studio: Pomposa

Coltura: Pero Abate

Data raccolta: 31/08/2016

Metodo di raccolta: su branche di un filare per lunghezza complessiva 3,80 m ed altezza 60 cm

	CAMPIONE	DIM. <55	DIM. 55-65	DIM. > 65	Difetti	TOTALI	Distanza dal corso d'acqua (m)
	Frutti (n°)	1	4	33		38	25
P7	Peso (kg)	0,194	0,741	9,71		10,645	25
	Frutti (n°)	14	46	19		79	75
P8	Peso (kg)	1,663	7,789	4,262		13,714	75
	Frutti (n°)	6	12	35		53	150
Р9	Peso (kg)	0,672	1,976	9,43		12,078	150
	Frutti (n°)	0	8	29	2	39	25
P10	Peso (kg)		1,583	8,492	0,609	10,684	25
	Frutti (n°)	0	4	45		49	75
P11	Peso (kg)		0,739	12,345		13,084	75
	Frutti (n°)	0	8	44		52	150
P12	Peso (kg)		1,369	14,025		15,394	150

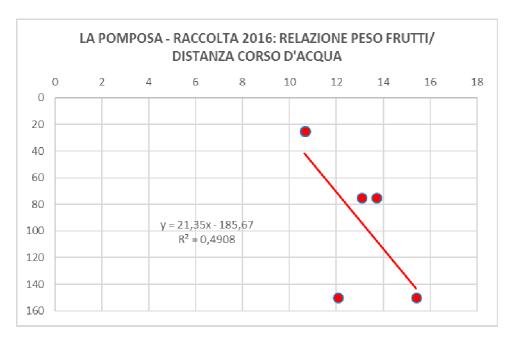


Grafico 36: Relazione 2016 fra il peso totale dei frutti raccolti e la distanza dal Po di Volano nel sito di Pomposa; in ascissa i Kg, in ordinata la distanza in (m).

Sito studio: Pomposa

Coltura: Pero Abate

Data raccolta: 07/09/2017

Metodo di raccolta: su branche di un filare per lunghezza complessiva 3,80 m ed altezza 60 cm

	CAMPIONE	<55	55-65	> 65	Difetti	TOTALI	Distanza dal corso d'acqua (m)
	Frutti (n°)	7	6	40		53	25
P7	Peso (kg)	0,51	1,407	11,169		13,086	25
	Frutti (n°)	3	5	19		27	75
Р8	Peso (kg)	0,154	0,862	5,024		6,04	75
	Frutti (n°)	0	0	22		22	150
Р9	Peso (kg)	0	0	6,472		6,472	150
	Frutti (n°)	8	21	44	2	75	25
P10	Peso (kg)	0,609	3,702	12,903	0,609	17,823	25
	Frutti (n°)	0	3	21		24	75
P11	Peso (kg)	0	0,444	6,844		7,288	75
	Frutti (n°)	2	12	48		62	150
P12	Peso (kg)	0,197	2,086	13,315		15,598	150

Grafico 37: Relazione 2017 fra il peso totale dei frutti raccolti e la distanza dal Po di Volano nel sito di Pomposa; in ascissa i Kg, in ordinata la distanza in (m).

Sito studio: Pomposa

Coltura: Pero Abate

Data raccolta: 05/09/2018

Metodo di raccolta: 2 piante intere per ciascun piezometro dei 2 allineamenti P7-P8-P9 e P10-

P11-P12.

CAMPIONE	Parametro	<55	55-65	65-75	> 75	Difetti	TOTALI	Distanza dal corso d'acqua (m)
	Frutti (n°)	6	21	67	42	0	136	25
P7	Peso (kg)	0,80	3,50	16,13	13,87		34,29	25
	Frutti (n°)	1	21	65	16	0	103	75
P8	Peso (kg)	0,08	3,37	15,35	5,25		24,05	75
	Frutti (n°)	4	17	36	34	0	91	150
Р9	Peso (kg)	0,39	2,57	8,74	11,80		23,50	150
	Frutti (n°)	5	28	61	47	0	141	25
P10	Peso (kg)	0,46	4,82	15,73	16,68		37,68	25
	Frutti (n°)	3	8	49	32	0	92	75
P11	Peso (kg)	0,55	1,51	12,37	11,12		25,56	75
	Frutti (n°)	5	7	22	46	0	80	150
P12	Peso (kg)	0,39	1,09	5,02	16,28		22,77	150

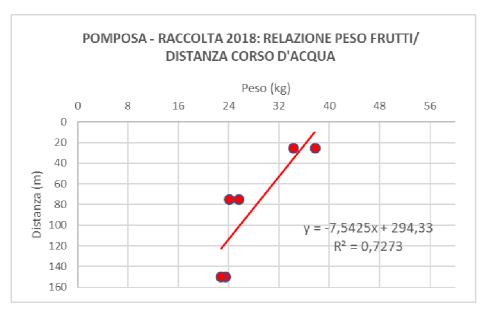


Grafico 38: Relazione 2018 fra il peso totale dei frutti raccolti e la distanza dal Po di Volano nel sito di Pomposa; in ascissa i Kg, in ordinata la distanza in (m).

Sito studio: S. Felice

Coltura: Pero Williams

Data raccolta: 04/08/2016

	CAMPIONE	<55	55-65	> 65	Difetti	TOTALI	Distanza dal corso d'acqua (m)
	Frutti (n°)	13	50	57		120	25
P19	Peso (kg)	1,104	6,382	10,654		18,14	25
	Frutti (n°)	11	61	39		111	75
P20	Peso (kg)	0,894	8,104	7,237		16,235	75
	Frutti (n°)	22	71	31		124	150
P21	Peso (kg)	1,887	9,89	6,036		17,813	150
	Frutti (n°)	6	20	21	2	49	25
P22	Peso (kg)	0,513	2,676	3,525	0,609	7,323	25
	Frutti (n°)	7	43	18		68	75
P23	Peso (kg)	0,605	5,841	3,385		9,831	75
	Frutti (n°)	8	42	22		72	150
P24	Peso (kg)	0,694	5,481	4,107		10,282	150

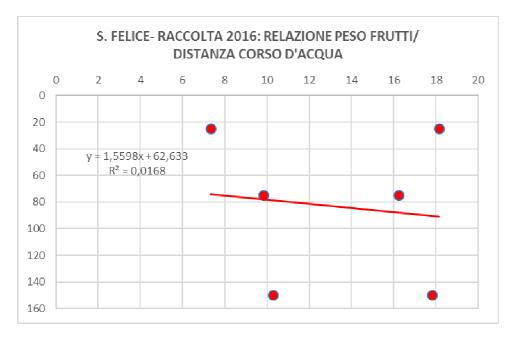


Grafico 39: Relazione 2016 fra il peso totale dei frutti raccolti e la distanza dal canale Ramedello nel sito di S. Felice; in ascissa i Kg, in ordinata la distanza in (m).

Sito studio: S. Felice

Coltura: Pero Williams

Data raccolta: 07/08/2016

Nota: Frutti di sequenza piante presso P19 – P20 – P21 non raccolti a causa di raccolta anticipata

da parte dell'azienda agricola.

CAMPIONE		<55	55-65	> 65	Difetti	TOTALI	Distanza dal corso d'acqua (m)
	Frutti (n°)	0	5	12		17	25
P22	Peso (kg)	0	0,677	2,521		3,198	25
	Frutti (n°)	1	4	22		27	75
P23	Peso (kg)	0,03	0,56	4,538		5,128	75
	Frutti (n°)	2	9	14		25	150
P24	Peso (kg)	0,113	1,176	2,944		4,233	150

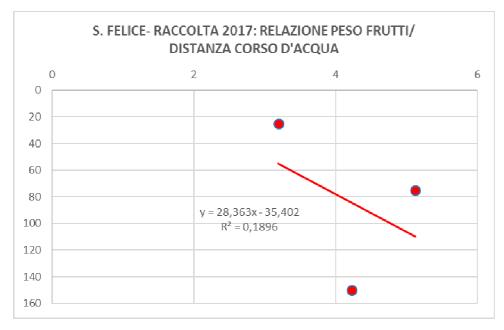


Grafico 40: Relazione 2017 fra il peso totale dei frutti raccolti e la distanza dal canale Ramedello nel sito di S. Felice; in ascissa i Kg, in ordinata la distanza in (m).

Sito studio: S. Felice
Coltura: Pero Williams

Data raccolta: 01/08/2018

Metodo di raccolta: 2 piante intere settore irrigato/asciutto per ciascun piezometro

dell'allineamento P22-P23-P24.

CAMPIONE	Parametro	<55	55-65	65-75	> 75	Difetti	TOTALI	Distanza dal corso d'acqua (m)
	Frutti (n°)	30	196	270	19	0	515	25
P22	Peso (kg)	2,24	24,54	48,03	4,61		79,41	25
	Frutti (n°)	35	163	149	7	0	354	75
P23	Peso (kg)	2,80	20,60	26,08	1,75		51,24	75
	Frutti (n°)	61	191	123	6	0	381	150
P24	Peso (kg)	4,82	24,33	21,97	1,41		52,53	150
	Frutti (n°)	38	261	242	12	0	553	25
P22	Peso (kg)	3,06	33,20	41,71	3,01		80,97	25
	Frutti (n°)	29	177	147	13	0	366	75
P23	Peso (kg)	2,54	23,40	26,22	3,28		55,43	75
	Frutti (n°)	38	153	135	12	0	338	150
P24	Peso (kg)	2,98	18,42	24,30	2,80		48,49	150

Nota: Evidenziata in giallo la raccolta da piante non irrigate nel corso della stagione; in azzurro da piante irrigate nel corso della stagione

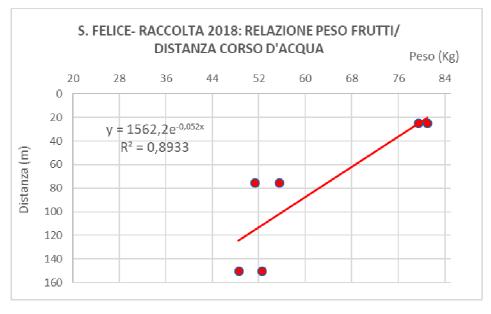


Grafico 41: Relazione 2018 fra il peso totale dei frutti raccolti e la distanza dal canale Ramedello nel sito di S. Felice; in ascissa i Kg, in ordinata la distanza in (m).

STIMA DELLA BIOMASSA TRASPIRANTE ATTRAVERSO LA MISURA DEL CANOPY COVER - CC, ESPRESSO IN PERCENTUALE SUI SITI STUDIO DI S. FELICE E POMPOSA (ANNO 2017)

La stima della biomassa traspirante è stata effettuata attraverso la misura, espressa in percentuale, del Canopy Cover (CC). Tale lavoro, che fornisce informazioni sullo sviluppo della parte aerea della pianta, è stato previsto per verificare, ancora una volta, l'eventuale positiva influenza sulle piante più vicine ai canali irrigui. La misurazione è stata eseguita 2 volte ogni stagione irrigua sui due siti di S. Felice e Pomposa, attraverso l'esecuzione di immagini fotografiche con il cosiddetto metodo della fotografia digitale emisferica ed utilizzando obiettivi fisheye. Le foto così ottenute sono poi state elaborate attraverso il free software ImageJ, per ottenere per ciascuna un valore di CC. Il tutto è stato poi composto tramite elaborazioni geostatistiche, per determinare, per fasce di distanza dai canali oggetto di monitoraggio, valori complessivi di CC. Nel 2016 sono stati eseguiti i rilievi stagionali previsti, i quali sono stati utili per perfezionare il metodo di rilievo, in particolare per ottenere un meccanismo automatico di georeferenziazione delle foto

Figura 28: Esecuzione di foto con asta telescopica (a sinistra) e successiva georeferenziazione (a destra). Metodo in uso nel 2016.

Nel 2017 i rilievi sono stati effettuati con georeferenziazione automatica delle foto, ma ancora solo selezionando punti in corrispondenza dei piezometri posati in ciascun sito. Infine, nel 2018, utilizzando un apposito supporto montato su automobile, si è riusciti ad ottenere una numerosa sequenza di foto lungo una serie di filari selezionati.

Di seguito si espongono le elaborazioni effettuate sui valori acquisiti negli ultimi due anni. Si sottolinea che i valori di CC vanno da un teorico "0" (nessuna copertura) ad "1" (100% di copertura del suolo da parte della pianta).

Anno 2017

Campo	Descrizione
File Name	Sigla immagine ottenuta da macchina fotografica con lente Fish-eye
Porosity 0.60	Valore medio degli spazi tra le foglie ottenuto con software ImageJ
	Inverso del valore di porosity, corrispondente alla copertura fogliare (canopy
CC 0.60	cover)
ID Piezo	Sigla identificativa del Piezometro
AZIENDA	Azienda agricola interessata
Data	Data di svolgimento del rilievo
	Solo sul sito di S. Felice a luglio: foto effettuate sia su piante irrigate e piante
Irri/Non irri	escluse dall'irrigazione

Tabella 10: Metadati del database utilizzato per il calcolo del Canopy Cover nei due siti di monitoraggio

PIEZOMETRI E SITO	MEDIA CC NON IRRIGATO	MEDIA CC IRRIGATO	DATA
POMPOSA			
p10		0,880	19/07/2017
p11		0,829	19/07/2017
p12		0,838	19/07/2017
р7		0,857	19/07/2017
p8		0,869	19/07/2017
р9		0,844	19/07/2017
SAN FELICE			
p22	0,822	0,830	25/07/2017
p23	0,837	0,821	25/07/2017
p24	0,821	0,803	25/07/2017
p19	0,827	0,804	25/07/2017
p20	0,840	0,844	25/07/2017
p21	0,805	0,820	25/07/2017

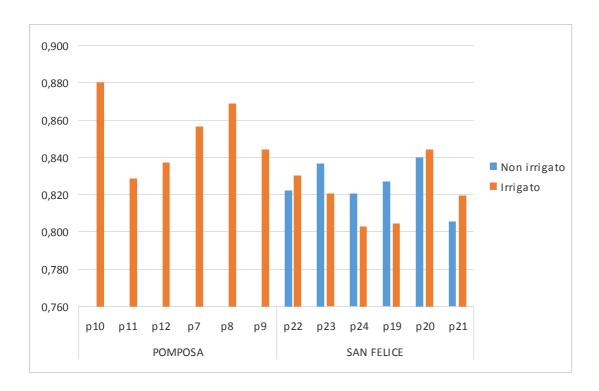


Grafico 42: Andamento a luglio 2017 della percentuale media di Canopy Cover nelle piante situate in prossimità dei piezometri. Per il solo sito di S. Felice è riportata, in blu, anche la percentuale relativa al Canopy Cover delle piante bypassate dall'irrigazione.

PIEZOMETRI E SITO	MEDIA CC	DATA
POMPOSA		
P10	0,891	09/08/2017
P11	0,868	09/08/2017
P12	0,902	09/08/2017
P7	0,902	09/08/2017
P8	0,916	09/08/2017
P9	0,920	09/08/2017
SANFELICE		
P19	0,921	10/08/2017
P20	0,924	10/08/2017
P21	0,925	10/08/2017
P22	0,912	10/08/2017
P23	0,881	10/08/2017
P24	0,901	10/08/2017

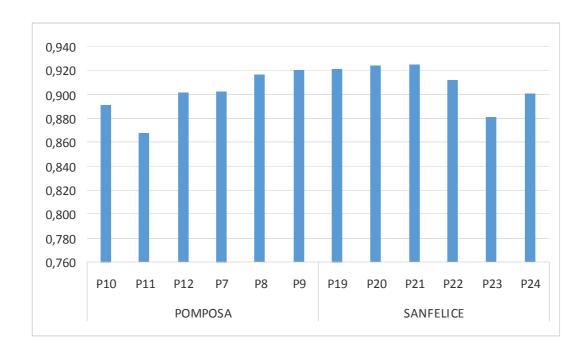


Grafico 43: Andamento ad agosto 2017 della percentuale media di Canopy Cover nelle piante situate in prossimità dei piezometri.

<u>Considerazioni 2017</u>: con il metodo adottato (foto su 4 piante nell'intorno di ciascun piezometro) non si evidenzia alcun trend rispetto alla distanza dal canale (o dal Po di Volano, nel caso del sito di Pomposa). Anche nella situazione più favorevole (piante non irrigate nel sito di S. Felice – rilievo di luglio) la maggior copertura fogliare è osservata a distanza intermedia dal canale.

Anno 2018



Figura 29: A sinistra fase iniziale di elaborazione GIS dei punti fotografati (sito di Pomposa – rilievo del 5 luglio 2018); a destra copertura areale ottenuta tramite interpolazione dei valori dei punti con algoritmo IDW (sito di S. Felice – rilievo del 4 luglio 2018).

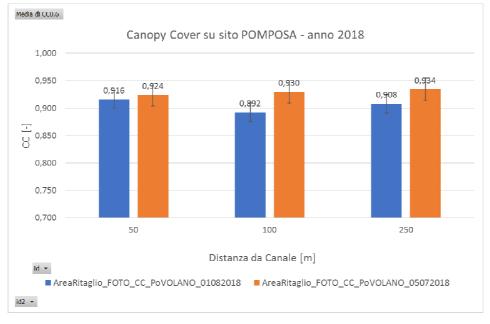


Grafico 44: rappresentazione con istogrammi della percentuale di CC nel sito di Pomposa, ripartita per date e distanza media dal Po di Volano.

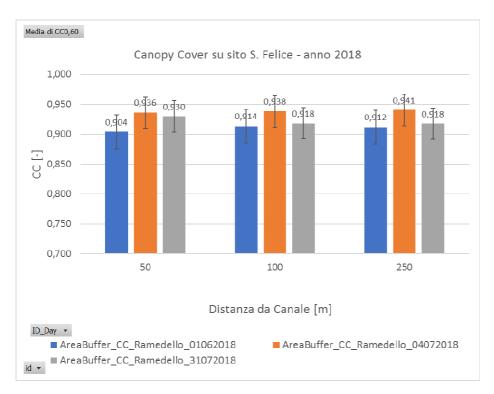


Grafico 45: rappresentazione con istogrammi della percentuale di CC nel sito di S. Felice, ripartita per date e distanza media dal canale Ramedello.

Considerazioni 2018: come anticipato, per ogni data di rilievi dell'anno preso in esame, si è riusciti ad effettuare centinaia di foto georeferenziate del CC lungo interi filari. L'elaborazione automatica di ciascuna immagine ha consentito di ottenere uno strato digitale di punti, ciascuno dei quali con un valore di CC associato (Fig. 11 – sinistra). Da questi poi, tramite appositi algoritmi, si è creato un raster con copertura areale continua (Fig. 11 – destra). Esso ha consentito di definire un valore medio di CC a distanze prefissate, che, nel caso in oggetto, sono rappresentate da 50, 100 e 250 m dal canale (o Po di Volano). L'ultimo passaggio è la trasformazione dei dati negli istogrammi sopra riprodotti, uno per ciascun sito. Come già per il 2017, non si evidenzia alcun trend significativo rispetto alla distanza dal canale (o dal Po di Volano), mentre è chiara una certa correlazione in entrambi i siti con la data di rilievo: quest'ultimo può essere legato alle differenti fasi di accrescimento vegetativo delle piante.

PARAMETRI ANALITICI RILEVATI NEI CAMPIONI DI ACQUE PRELEVATI DA PIEZOMETRI E CANALI AFFERENTI AL SITO DI POMPOSA (ANNO 2016)

Figura 30: Prelievo di campioni di acqua da piezometro nel sito di Pomposa tramite Bailer

Data	Parametro	U.M.	P7	P8	P9	P10	P11	P12	Condotto Volano
31/08/16	Durezza	dΗ	15,7	14,1	32,7	45,0	25,3	15,4	15,4
31/08/16	Ecw	μS/cm	1994	848 ⁵	2840	5760	1362	798 ⁶	779
31/08/16	рН	log	7,45	7,50	7,28	7,60	7,28	7,60	7,58
31/08/16	Cloruri	mg/l	460	127	616	1363	157	120	129
31/08/16	Solfati	mg/l	102	60,3	190	243	162	55,3	44
31/08/16	Calcio	mg/l	61,8	68,2	124	110	125	75	75,6
31/08/16	Magnesio	mg/l	30,5	19,7	66,4	128	33,7	21	20,7
31/08/16	Sodio	mg/l	61,2	0,02	108,6	272,4	25,7	0,02	0,01
07/12/16	Durezza	dΗ	42,8	30,7	34,7	48,9	38,5	33,4	NO DATA ⁷
07/12/16	Ecw	μS/cm	3540	3880	3690	5830	2540	4660	NO DATA
07/12/16	рН	log	7,79	7,51	7,60	7,42	7,54	7,43	NO DATA
07/12/16	Cloruri	mg/l	680	927	742	1256	339	893	NO DATA
07/12/16	Solfati	mg/l	288	146	205	205	248	251	NO DATA
07/12/16	Calcio	mg/l	136	89,2	108	104	156	93,8	NO DATA
07/12/16	Magnesio	mg/l	103	78,4	84,5	148	71,8	87,7	NO DATA
07/12/16	Sodio	mg/l	148,0	167,0	155,9	191,4	132,5	172,3	NO DATA

⁵ Bassa conducibilità elettrica legata alla diluizione per infiltrazione di acque irrigue nel pozzetto.

⁶ Come in nota (1)

⁷ Canale svasato nel periodo autunno - invernale; acqua non prelevabile.

Data	Parametro	U.M.	P7	P8	P9	P10	P11	P12	Condotto Volano	Po di Volano
09/08/2017	Durezza	dH	18,6	12,6	41,7	49,1	13,6	21,2	12,5	14,5
09/08/2017	Ecw	μS/cm	1807	642	2610	6290	761	1320	649	888
09/08/2017	рН	log	7,13	7,61	6,93	7,05	7,27	7,32	7,63	7,52
09/08/2017	Cloruri	mg/l	204	63,4	377	1333	100	214	61,5	126
09/08/2017	Solfati	mg/l	108	51	258	194	66,1	117	41,4	52,1
09/08/2017	Calcio	mg/l	86,7	64,6	167	93,3	71,6	99,2	64	71,7
09/08/2017	Magnesio	mg/l	27,9	15,5	79	156	15,5	31,8	15,4	19,3
09/08/2017	Sodio	mg/l	89,7	50,8	116,1	191,4	68,7	107,0	27,7	45,8
09/08/2017	Torbidità	NTU	4,9	36,9	3,4	47,8	13,8	57,6	36,5	19,6
21/12/2017	Durezza	dH	26,4	48,9	30,3	50,0	39,8	29,4	NO DATA	44,8
21/12/2017	Ecw	μS/cm	1720	6370	2070	5960	4590	1480	NO DATA	4580
21/12/2017	рН	log	7,54	7,83	7,65	7,76	7,73	7,66	NO DATA	7,15
21/12/2017	Cloruri	mg/l	216	1217	347	1362	738	169	NO DATA	1048
21/12/2017	Solfati	mg/l	160	351	194	188	319	190	NO DATA	195
21/12/2017	Calcio	mg/l	124	116	126	97,2	133	140	NO DATA	116
21/12/2017	Magnesio	mg/l	38,8	141	56,5	157	91,9	42,4	NO DATA	116
21/12/2017	Sodio	mg/l	84,3	154,4	93,1	150,9	138,7	68,0	NO DATA	135,2
21/12/2017	Torbidità	NTU	7,89	49,12	96,02	6,69	181,5	39,89	NO DATA	9,47

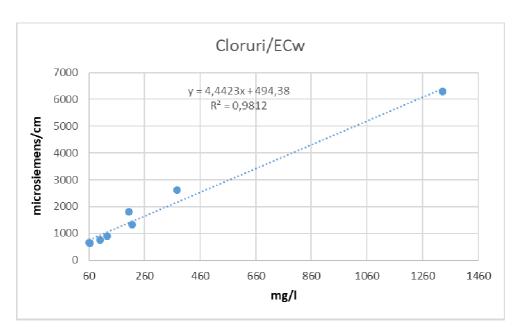


Grafico 46: Correlazione fra valori di conducibilità elettrica e contenuto in cloruri all'interno delle acque campionate nei piezometri, nel Condotto Volano e nel Po di Volano nel 2017.

Data	Parametro	U.M.	P7	P8	P9	P10	P11	P12	Condotto Volano	Po di Volano
31/05/2018	Durezza	dH	11,5	40,2	31,1	49,4	40,3	29,1	14,1	18,5
31/05/2018	Ecw	μS/cm	860	3660	2370	6310	4330	1990	743	1255
31/05/2018	pН	log	7,18	7,27	7,25	7,36	7,46	7,44	7,52	7,47
31/05/2018	Cloruri	mg/l	65,8	769	446	1485	731	267	113	195
31/05/2018	Solfati	mg/l	49,9	252	178	142	285	204	64,1	92
31/05/2018	Calcio	mg/l	63,3	136	123	91,3	139	131	70,7	81,6
31/05/2018	Magnesio	mg/l	13,2	91,4	59,8	158	90,3	46,7	18,2	30,5
31/05/2018	Sodio	mg/l	45,0	122,2	90,2	159,1	139,1	97,7	37,1	76,6
31/05/2018	Torbidità	NTU	4,4	75,9	39,3	16,5	41,2	18,9	25,1	8,9
12/11/2018	Durezza	dH	13,1	31,9	30,0	29,2	23,4	33,0	NO DATA	28,3
12/11/2018	Ecw	μS/cm	673	2480	1320	1180	1110	1940	NO DATA	1810
12/11/2018	рН	log	8,02	7,74	7,79	8,20	8,31	8,55	NO DATA	8,42
12/11/2018	Cloruri	mg/l	64,2	645	135	89	127	326	NO DATA	392
12/11/2018	Solfati	mg/l	122	167	196	202	130	220	NO DATA	153
12/11/2018	Calcio	mg/l	71	129	152	162	123	149	NO DATA	118
12/11/2018	Magnesio	mg/l	13,5	59,9	37,6	28,2	26,7	52,5	NO DATA	50,9
12/11/2018	Sodio	mg/l	56,2	94,5	63,8	66,8	51,4	85,4	NO DATA	74,9
12/11/2018	Torbidità	NTU	25,7	282,1	36,7	2,3	79,9	32,3	NO DATA	45,6

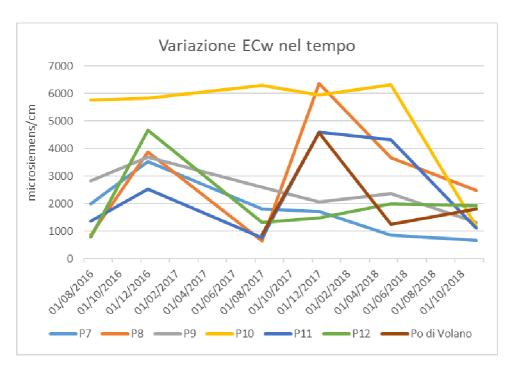


Grafico 47: Andamento per tutto il periodo di monitoraggio della conducibilità elettrica nel tempo in base alle analisi effettuate nelle acque di falda raccolte dai piezometri e dal Po di Volano. Da notare la quasi generale diminuzione di conducibilità nel periodo irriguo, con l'eccezione del P10, che assume un anomalo andamento costante per quasi tutto il periodo.

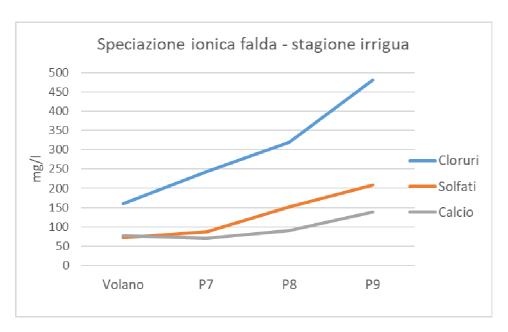


Grafico 48: andamento dei valori dei più comuni ioni presenti nella falda ipodermica del sito di Pomposa, partendo dal Po di Volano fino al piezometro più lontano dell'allineamento P7-P8-P9 (medie dei valori triennali riscontrati analiticamente nella stagione irrigua). La conducibilità elettrica, comunque fortemente correlata con cloruri (grafico 46) e solfati, non è riportata.

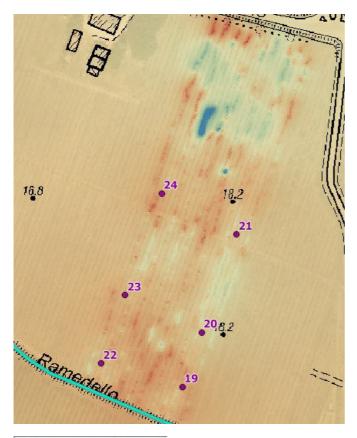
ALLEGATO 24

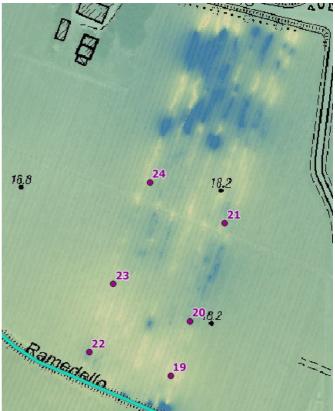
RAPPRESENTAZIONI SPAZIALI, TRAMITE IL METODO IDW, DELL'ANDAMENTO DELLA CONDUCIBILITA' ELETTRICA NEL SUOLO NEGLI APPEZZAMENTI MONITORATI DURANTE L'AZIONE 3.3

Introduzione

L'EM38 è uno strumento portatile di campo, che consente di mappare la conducibilità elettrica apparente del terreno fino ad una profondità di circa 0,70 -0,80 m dal piano di campagna. Tecnicamente, esso viene trasportato in campo, a piedi o con un mezzo trainante, rilevando ad un intervallo fisso di alcuni secondi un valore di conducibilità, che viene associato ad un punto identificato geograficamente tramite GPS integrato. Le variazioni riscontrate sono correlabili al contenuto idrico, alla salinità ed alla tessitura del terreno, e quindi, indirettamente, consentono di valutare l'influenza della falda ipodermica sulle colture.

Come previsto nel Piano, in ogni stagione irrigua sono stati eseguiti 2 rilievi in ciascuna delle aziende monitorate nell'ambito dell'Azione 3.3. Il risultato è costituito da mappe con curve di egual conducibilità, da confrontare successivamente con gli altri parametri monitorati (rilievi della temperatura fogliare, campionamento dei suoli per la determinazione della % di umidità, lettura della quota di falda ipodermica etc.). L'obbiettivo finale, insito nell'Azione, è di verificare se, e in che misura, una falda ipodermica prossima alla superficie possa influenzare il comportamento e/o la produttività di alcune colture selezionate.

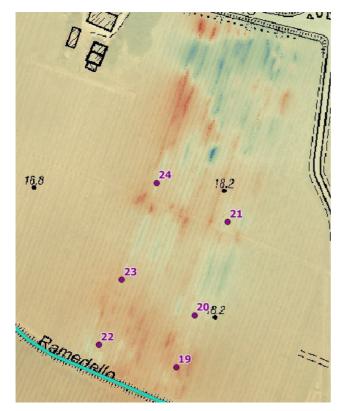

Per realizzare le mappe, si è dovuto estendere con tecniche geostatistiche (interpolazione col metodo IDW - Inverse Distance Weighted) i valori di conducibilità provenienti dai numerosi punti rilevati dallo strumento in ogni campo. Nel presente allegato, è descritto quanto realizzato nell'azienda di San Felice s. P. sul canale Ramedello, tenendo conto che analoghi rilievi ed elaborazioni sono stati effettuati anche nell'azienda Pomposa di Ferrara. Poiché però in tale azienda entra in gioco un'ulteriore variabile rappresentata dalla salinità della falda e vi è una maggior variabilità tessiturale, legata alle dinamiche dell'ambiente deposizionale (delta padano), i dati raccolti sono ancora in corso di valutazione.

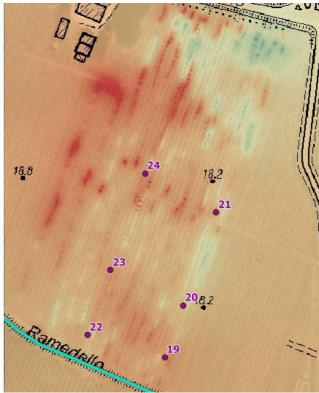

In ogni immagine sono visibili la topografia, l'ubicazione dei piezometri ed aree a tinte graduate, corrispondenti ad intervalli di egual conducibilità elettrica, misurati in milliSiemens/m.

Sito S. Felice s. P. (MO)

I rilievi con EM38 sono stati effettuati su un appezzamento coltivato a pereto di circa 3 ha, posto a NE del canale Ramedello e ospitante due allineamenti di 3 piezometri ciascuno, situati a distanza crescente dal canale. I suoli presenti sono abbastanza uniformi nei primi 150 cm dalla superficie, presentando quasi sempre orizzonti superficiali a tessitura franca argillosa – franca argillosa limosa ed orizzonti profondi a tessitura franca limosa, più raramente franca. Frequenti gli orizzonti ad accentuata idromorfia (gley) sotto i 130 - 150 cm dal p.c.

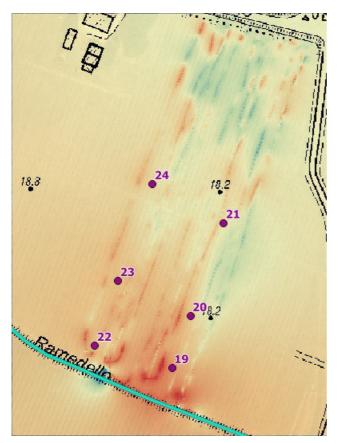
Di seguito sono mostrate le immagini relative ai rilievi effettuati nelle tre stagioni irrigue dal 2016 al 2018 (due per ciascun anno).

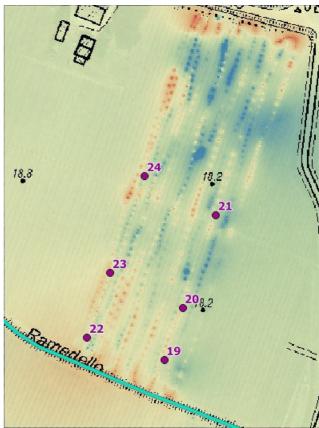




Valore Colore

13.000000
16.166700
19.333300
22.500000
25.666700
28.833300
32.000000


Figura 31: rappresentazioni IDW dell'andamento di conducibilità elettrica rilevata con EM38 nel sito di S. Felice s. P. nel 2016: 02/08/2016 (a sin.), 26/08/2016 (a des.), A sinistra la scala colorimetrica utilizzata (valori in milliSiemens/m).



Valore	Colore
39.000000	
42.000000	
45.000000	
48.000000	
51.000000	
54.000000	
57.000000	

Figura 32: rappresentazioni IDW dell'andamento di conducibilità elettrica rilevata con EM38 nel sito di S. Felice s. P. nel 2017: 25/07/2017 (a sin.), 10/08/2017 (a des.), A sinistra la scala colorimetrica utilizzata (valori in milliSiemens/m).

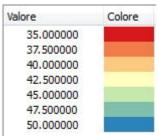
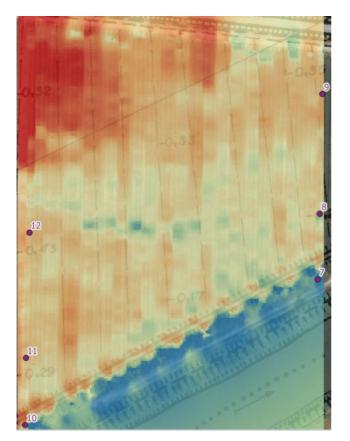
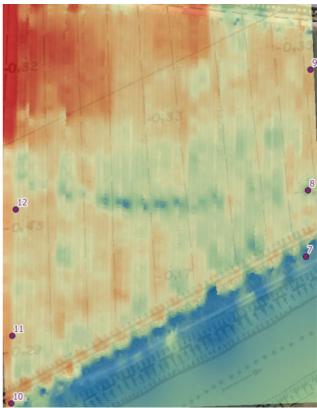


Figura 33: rappresentazioni IDW dell'andamento di conducibilità elettrica rilevata con EM38 nel sito di S. Felice s. P. nel 2018: 01/06/2018 (a sin.), 31/07/2018 (a des.), A sinistra la scala colorimetrica utilizzata (valori in milliSiemens/m).

Come si può facilmente desumere dalle immagini sopra riportate, la conducibilità elettrica rilevata dallo strumento varia sia nel corso della stessa stagione, sia da un anno all'altro. La scala colorimetrica utilizzata per il 2016 mostra una variazione di valori di conducibilità (esclusi rari valori borderline legati ad anomalie locali) fra i 13 ed i 32 mS/m; quelle 2017 e 2018, invece, una variazione media fra 35 e 57 mS/m. Si tratta comunque di valori piuttosto raggruppati, se si tiene solo conto che, in un singolo rilievo presso l'azienda di Pomposa, sono stati riscontrati valori oscillanti fra i 32 ed i 283 mS/cm. Detto questo, si osserva altresì che i pattern di colori, salvo eccezioni di ridotta estensione, non variano in maniera sostanziale da un'immagine all'altra. Permane in tutte le immagini, ad esempio, la macchia azzurro/blu (maggior conducibilità) a ferro di cavallo, situata nella parte settentrionale dell'appezzamento. Andando nel dettaglio dei singoli anni, vi è da rilevare un aumento medio dei valori di conducibilità nel corso della stagione irrigua, sia nel 2016 che nel 2018, mentre avviene il contrario (anche se in maniera meno evidente) nel 2017. I rilievi più rappresentativi sono probabilmente quelli del 2018, distanziati fra di loro circa due mesi e quindi in grado di mostrare differenze nell'arco di un periodo che va dall'inizio irrigazione fin quasi alla raccolta. Viceversa, i due rilievi stagionali 2016 e 2017 sono stati effettuati nell'arco di meno di un mese e possono essere stati influenzati da locali eventi piovosi intervenuti nel periodo: ad esempio, fra il 4 ed il 26 agosto 2016, vi sono state precipitazioni per circa 30 mm complessivi, con conseguente aumento dell'umidità nel suolo e relativa conducibilità.

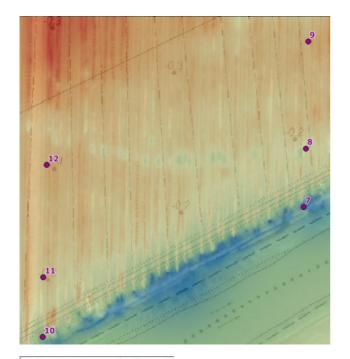
Di seguito è mostrata una tabella di confronto fra i valori di umidità % del suolo provenienti dai campioni raccolti nei giorni in cui sono state effettuati i rilievi con EM38 e la conducibilità elettrica media. Si nota come, nell'ambito di ogni anno, vi sia una certa correlazione fra variazione della conducibilità e della % di umidità, con l'esclusione del dato del 25 luglio 2017 per cui, a fronte di una conducibilità media piuttosto elevata, non vi è adeguato riscontro nell'umidità. Vi è comunque da sottolineare che il campionamento per la determinazione della % di umidità è stato eseguito su soli 6 punti (per ciascuno 2 campioni: orizzonte superficiale ed orizzonte profondo), mentre i rilievi con l'EM38 constano di migliaia di battute su un'area molto più vasta. Si tratta pertanto di grandezze non sempre adeguatamente confrontabili.

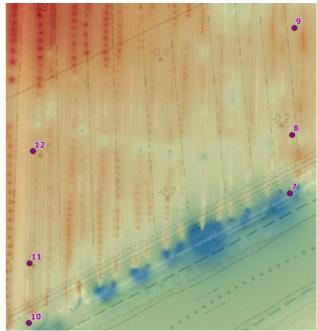

Data	% media umidità suolo	Media conducibilità (mS/m)
04/08/2016	13,53	20,42
26/08/2016	15,46	27,22
25/07/2017	14,91	47,06
10/08/2017	15,94	44,84
01/06/2018	13,21	40,94
31/07/2018	17,56	43,59


Tabella 11: Confronto fra medie di umidità % del suolo e conducibilità elettrica riscontrate nel sito di S. Felice nei 3 anni di monitoraggio.

Sito Pomposa (FE)

I rilievi con EM38 sono stati effettuati su un vasto appezzamento coltivato a pereto di circa 8 ha, posto a S del Po di Volano e ospitante due allineamenti di 3 piezometri ciascuno, situati a distanza crescente dal fiume. I suoli presenti hanno prevalente tessitura franca argillosa – franca argillosa limosa, ma può sussistere una certa variabilità legata alla presenza di antichi meandri del medesimo fiume, con tendenza a termini anche molto più grossolani (suoli franchi, franchi sabbiosi). E' presente una falda salina (6 – 8 μ S/cm) solitamente sotto i 150 cm di profondità, ed una lente più superficiale di acqua più dolce (1,5 – 2 μ S/cm); orizzonti fortemente idromorfi si osservano già a partire da 80 - 90 cm dal p.c.


Di seguito, sono mostrate le immagini relative ai rilievi effettuati nelle stagioni irrigue 2017 - 2018 (due per ciascun anno).



Valore	Colore
53.7	
68.1	
82.5	
96.9	
111	
126	
140	
154	7
169	7

Figura 34: rappresentazioni IDW dell'andamento di conducibilità elettrica rilevata con EM38 nel sito di S. Pomposa nel 2017: 19/07/2017 (a sin.), 10/08/2017 (a des.), A sinistra la scala colorimetrica utilizzata (valori in milliSiemens/m).

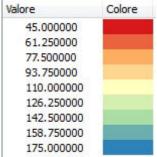


Figura 35: rappresentazioni IDW dell'andamento di conducibilità elettrica rilevata con EM38 nel sito di S. Pomposa nel 2018: 31/05/2018 (a sin.), 01/08/2018 (a des.), A sinistra la scala colorimetrica utilizzata (valori in milliSiemens/m).

Complessivamente, il sito di Pomposa presenta variazioni di conducibilità elettrica decisamente maggiori (fra i 40 ed i 170 μ S/cm) rispetto al sito di S. Felice. Un range così ampio deriva in gran parte dalla presenza di due aree caratteristiche: la prima, collocata nell'angolo NW dell'appezzamento e non ospitante piezometri, contiene suoli grossolani (franco sabbiosi – sabbioso franchi), a bassa conducibilità; la seconda, al bordo meridionale verso il Po di Volano, mostra evidenze di forte inumidimento del terreno negli orizzonti profondi, quasi certamente causata dalla filtrazione di acque provenienti dal medesimo fiume. La parte intermedia, che ospita i due allineamenti di piezometri, è maggiormente uniforme, anche se, come evidente nelle elaborazioni 2017, sembra presentare, nella parte centrale, aree a maggior idromorfia.

Tutti questi aspetti derivano dalla precedente morfologia fluviale di piana a meandri, in gran parte obliterata dalle lavorazioni effettuate per la sistemazione dei campi e l'impianto del pereto.

Considerazioni sui rilievi effettuati

L'indagine tramite EM38 ha consentito pertanto, nei due siti citati, di verificarne il grado di omogeneità in relazione alle variazioni di umidità nel terreno e nel corso della stagione irrigua. Il sito di S. Felice si è senz'altro mostrato più omogeneo, con minime variazioni di conducibilità e a carico, soprattutto, delle zone ospitanti i piezometri più lontani dal canale. Il sito Pomposa, viceversa, presenta un'elevata variabilità intrinseca, per cui, ad esempio, i punti in cui sono collocati i piezometri P7, P8 e P10, si differenziano in maniera sensibile da quelli ospitanti gli altri tre. Tali indicazioni hanno contribuito a definire l'attendibilità delle indicazioni provenienti da ciascun sito per quanto riguarda le successive elaborazioni operate nell'ambito dell'Azione 3.3.

Figura 36: Strumento EM38 con slitta per il traino manuale

ALLEGATO 25

RAPPRESENTAZIONE DELL'ANDAMENTO DEL LIVELLO DI FALDA E DELLA CONDUCIBILITA' ELETTRICA RILEVATA DAI SENSORI DEL SERVIZIO GEOLOGICO, SISMICO E DEI SUOLI (SGSS) NEL SITO DI POMPOSA

Figura 37: Postazione presso il P9 con i due sensori e la centralina SGSS.

Caratteristiche delle 4 sonde:

Sonda 1: (n. 7387) – P9a (piezometro nuovo, installato vicino al 9)

- profondità 2.92 da b.f.8
- Soggiacenza: 1.32 da b.f. (con b.f. a + 20 cm da p.c.)
- CE sup. 7.16 mS/cm; a fondo foro 7.31 mS/cm
- T sup 12.9 °C; a fondo foro 12.3 °C
- Sonda installata a 2.70 da b.f.

Sonda 2: (n. 7388) – P9b (piezometro nuovo, installato vicino al 9)

- profondità 1.78 da b.f. esterna
- Soggiacenza: 1.52 da b.f. esterna (con b.f. a xxx cm da p.c.)
- CE⁹ sup. 4.47 mS/cm; a fondo foro 4.99 mS/cm
- Sonda installata a 1.60 da b.f.

⁸ b.f. = Base freatimetro; corrisponde al piano campagna

⁹ CE = Conducibilità Elettrica

Sonda 3: (n. 7385) – P7a (piezometro nuovo, installato vicino al P7)

- profondità 2.10 da b.f./p.c.
- Soggiacenza al 21 aprile 2017: 1.13 da b.f./p.c.
- CE 1.15 m 2.80 mS/cm;
- CE a 1.50 m 4.17 mS/cm;
- CE a 1.80 m 7.60 mS/cm;
- CE a fondo foro 8.92 mS/cm
- Sonda installata a 1.90 da b.f.

Sonda 4: (n. 7384) – P7b (piezometro nuovo, installato vicino al 7)

- profondità 1.63 da b.f./p.c.
- Soggiacenza: 1.16 da b.f./p.c.
- CE: 1.16 m 5.76 mS/cm;
- CE a 1.50 m 6.32 mS/cm;
- CE a fondo foro 6.39 mS/cm
- Sonda installata a 1.60 da b.f.

Seguono due grafici, in cui è rappresentato l'andamento di altezza di falda rispetto al p.c. e di conducibilità elettrica nel primo periodo di rilievi.

Da questi rilievi estremamente precisi, si evince come, a variazioni molto simili di livello di falda in ciascuna coppia di sonde, corrispondano differenti valori di conducibilità elettrica, legati al fatto che la sonda più superficiale è posizionata su una lente di acqua più dolce (circa 2 mS/cm contro i 6-7 della falda sottostante). Tale lente è mantenuta dalle piogge e dalle numerose irrigazioni eseguite nel pereto, ma può variare di spessore nel corso dell'anno. E' esemplificativo il fatto che, in corrispondenza della sonda 7a, posta circa mezzo metro più in profondità rispetto alla 7b, i valori di conducibilità diminuiscano fra giugno ed agosto fino a livelli analoghi a quelli della suddetta 7b. Questo andamento può essere spiegato considerando che le irrigazioni abbiano approfondito ed ampliato, nel periodo, lo spessore della lente di acqua dolce. A fine agosto, dopo la raccolta dei frutti, la conducibilità torna naturalmente a risalire fino a valori analoghi a quelli del precedente periodo invernale. Per ulteriori dettagli si rimanda alla relazione, allegata al presente Piano, prodotta a dicembre 2018 dal Servizio Geologico, Sismico e dei Suoli regionale (*Relazione_dati_2018_Pomposa_dicembre 2018.pdf*).

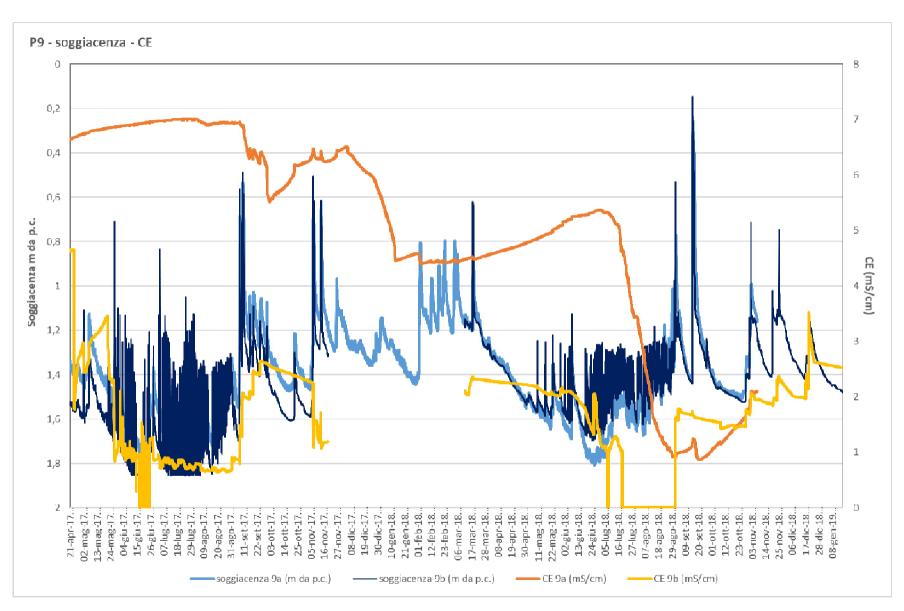


Grafico 49: Soggiacenza rispetto al p.c. e conducibilità elettrica rilevate nel periodo aprile 2017- gennaio 2019 nelle sonde in prossimità del P9 (a circa 150 m dal Po di Volano).

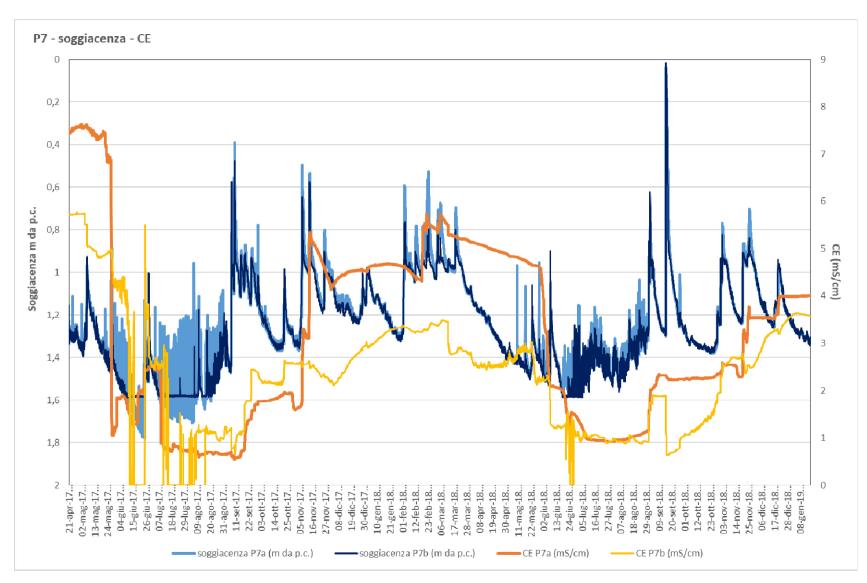


Grafico 50: Soggiacenza rispetto al p.c. e conducibilità elettrica rilevate nel periodo aprile 2017- gennaio 2019 nelle sonde in prossimità del P7 (a circa 25 m dal Po di Volano).

ALLEGATO 26

METODO ANNO 2017 DI RACCOLTA FRUTTI (RIF. AZIONE 3.3 - FASE "3C")

In alternativa a quanto scritto in progetto ("Raccolta contemporanea dei frutti di ciascuna pianta sottoposta ad indagine, per un metro lineare complessivo su 1 branca posta a mezza altezza e conseguente misura dei pesi e dei calibri") si è proposto ed attuato:

- In corrispondenza di ogni piezometro a distanza crescente dal canale: raccolta complessiva dei frutti lungo la fila per una distanza di circa 3,80 m ed un'altezza di circa 60 cm.

Per l'azienda La Pomposa la distanza comprende tutte le 6 piante selezionate (distanza sulla fila circa 50 cm) e per un'altezza corrispondente a 30 cm sopra e sotto rispetto al 2° filo di sostegno. Nell'azienda di S. Felice s. P. la distanza comprende una pianta intera e la metà destra e sinistra rispetto al tronco di due piante adiacenti; l'altezza comprende lo spazio fra il filo di sostegno dell'impianto a goccia e il filo superiore.

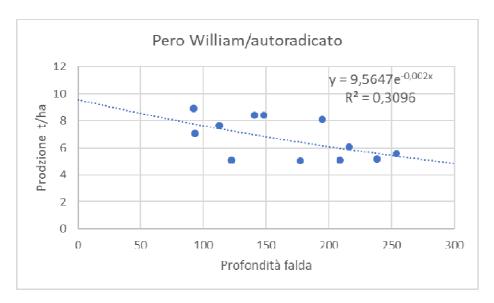


Figura 38: Rappresentazione schematica dell'area di raccolta frutti relativa all'impianto a pereto ubicato nell'azienda agricola di S. Felice s. P.

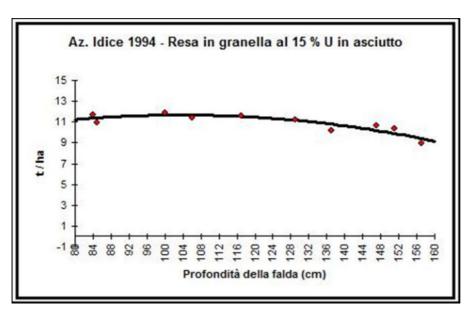
Inoltre, nel Piano, dopo la raccolta, era stato ipotizzato solo il computo della "media delle dimensioni dei calibri dei frutti raccolti per ciascun gruppo di piante"; nella nuova metodologia è prevista anche la misurazione del peso complessivo (si veda All. 21).

METODO ANNO 2018 DI RACCOLTA FRUTTI (RIF. AZIONE 3.3 - FASE "3C")

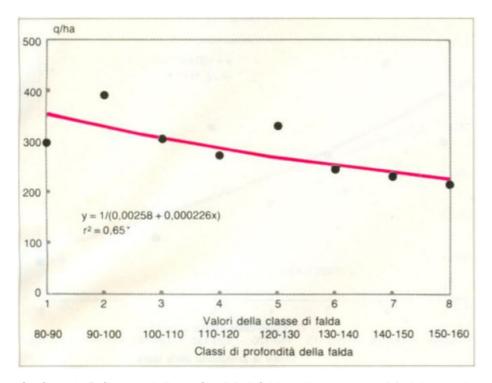
In considerazione del fatto che, anche a causa della siccità 2017, la raccolta frutti, effettuata tramite il metodo precedentemente descritto, aveva prodotto una ridotta quantità di campioni, poco significativi per le successive elaborazioni statistiche, si è deciso di adottare per il 2018 un ulteriore nuovo metodo.


Esso è consistito nella raccolta completa dei frutti su due piante poste in prossimità di ciascuno dei 6 piezometri, quindi, nel sito di Pomposa, 2 x 6 = 12 piante complete. Nel sito di S. Felice sono state campionate anche le piante bypassate dal sistema irriguo, quindi ulteriori 2 piante per ogni piezometro. In totale, quindi, in questo sito sono state campionate 2 x 2 x 6 = 24 piante complete. Su questi frutti è stato eseguito, come già proposto nel 2017, il calcolo non solo della dimensione media dei calibri dei frutti, ma anche ma misura del peso complessivo.

Azione 3.4 – Valutazioni economiche relative ai servizi ecosistemici forniti dalla ricarica delle falde.


ALLEGATO 27

GRAFICI STORICI DI CORRELAZIONE PRODUZIONE AGRICOLA / ALTEZZA DI FALDA


Sono di seguito riportati tre grafici, estratti da progetti attivati in passato dal CER (c.d. "Piano inclinato"), per la determinazione del contributo di falda ipodermica alla produzione di alcune colture selezionate. Si tratta, in particolare, di pero William, mais e pomodoro. In queste sperimentazioni, la raccolta è stata effettuata su parcelle in cui è stata variata artificialmente l'altezza di falda ipodermica, sino ad ottenere un differenziale di quota della medesima di circa 100 cm fra la prima e l'ultima. I valori di produzione ottenuti, incrociati con quelli di profondità di falda, hanno consentito di sviluppare curve di tendenza, le cui formule sono state utilizzate per le fasi successive. Poiché non esistono sperimentazioni di questo tipo per ogni tipo di coltura, i risultati ottenuti sul pero sono stati applicati a tutte le colture arboree, quelli sul mais sulle erbacee e quelli sul pomodoro a tutte le orticole.

*Grafico 51: Prova CER 1999 - "*Influenza della profondità di falda sulle caratteristiche vegeto-produttive del pero autoradicato e su cotogno c". Il grafico si riferisce a pero William, terzo anno di produzione.

*Grafico 52: Prova CER 1994 - "*Influenza della profondità di falda ipodermica sulle caratteristiche vegeto-produttive del mais da granella in coltura asciutta ed irrigua"

Grafico 53: "Influenza della profondità di falda sulla resa e qualità del pomodoro da industria (A. Battilani, P. Mannini – L'Informatore Agrario 15/92)

ALLEGATO 28

PROCEDURA FINALIZZATA ALLA CREAZIONE DI UN METODO PER LE VALUTAZIONI ECONOMICHE RELATIVE AI SERVIZI ECOSISTEMICI FORNITI DALLA RICARICA DELLE FALDE.

Partner di progetto: CNR – IBIMET

Responsabile: Dr. Guido M. Bazzani

Per la stima dei benefici derivanti dall'apporto idrico della falda freatica, mediante una procedura concordata con il CER, sviluppata in una ripetuta serie di incontri, è stata definita una procedura che, partendo dai dati sperimentali forniti dal CER che "esegue il monitoraggio su alcuni gruppi di arboree (pero, melo) escluse dall'irrigazione e poste a distanze crescenti da un canale invasato; tramite rilievi IR, raccolta frutti, dati di falda (piezometri), calcolo delle differenze produttive rispetto alle piante irrigate", ha permesso:

- sulla base delle differenze produttive riscontrate sulle colture, di effettuare il calcolo del beneficio economico derivante dalla risalita di falda dovuta alle perdite dei canali di irrigazione gestiti dai consorzi di bonifica.
- di formulare sulla base dei dati bibliografici e su dati raccolti in altri progetti CER sullo stesso argomento, una prima ipotesi di stima del beneficio sulle restanti principali colture dell'area indagata
- di predisporre una procedura informatica che sulla base dei dati disponibili esegue la stima dei benefici derivanti dall'apporto idrico della falda freatica. Tale procedura è stata scritta in GAMS, programma liberamente utilizzabile, senza l'acquisto di licenze, nel contesto qui definito.

Di seguito vengono descritte la procedura ed il programma applicativo realizzato.

Il programma è sviluppato in modo da permettere una completa definizione dei suoi elementi all'utente finale (CER) ed è costruito in modo da poter essere adattato a situazioni specifiche relativamente agli ambiti temporali e spaziali considerati.

La sua applicazione richiede:

- l'istallazione del programma predisposto in una cartella del computer definita radice
- l'istallazione del programma GAMS scaricabile dal WEB al sito: https://www.gams.com/download/

Una volta effettuati i precedenti passaggi deve essere creata una cartella per gli archivi dati. Si consiglia di creare una sotto cartella del programma principale e chiamarla: Datilnput.

I dati utilizzati hanno un riferimento annuale e il periodo considerato viene definito in un archivio di testo modificabile dall'utente: anni.txt. Il contenuto di tale file definisce l'indice 'an' che individua gli anni.

Gli ambiti territoriali vengono individuati dall'indice 'd' e sono definiti nell'archivio: dove.txt.

Gli elementi di questo insieme comprendono

- i campi sperimentali 'k' utilizzati dal CER per ognuno dei quali sono state stimate le funzioni produzione/altezza falda
- gli ambiti territoriali 'z' per i quali si vuole stimare il beneficio derivante dalla falda

La stima del beneficio viene riferita a singoli appezzamenti omogenei per qualità ed uso del suolo, indicati dall'indice 'a', e definiti nell'archivio: appezzamenti.txt.

Le tipologie o qualità di suolo indicate dall'indice 's' sono definite nell'archivio: suoli.txt. La versione sperimentale contiene i seguenti tipi:

- · sci 'sciolti',
- m i 'medio impasto',
- arg 'argillosi'

che possono essere modificati dall'utente.

Gli usi del suolo, qui denominati colture ed individuati dall'indice 'c' sono definiti nell'archivio: colture.txt

- mais
- melo
- pero
- vite

Il regime irriguo, indice 'r', che può essere asciutto, irriguo o medio, rappresenta un ulteriore indice che a discrezione dell'utente può essere considerato quando disponibili separati dati sperimentali, distinte funzioni di beneficio di falda sono state stimate per i diversi regimi.

Solo per alcune colture sono forniti dati derivanti da ricerche sperimentali:

- pero
- mais

Il CER ha stimato la relazione tra la produzione e la profondità di falda sulla base dei dati raccolti. Le funzioni di grado uno e due sono di seguito riportate-

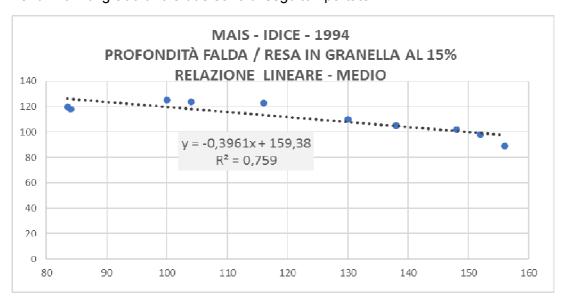


Figure 1 - Mais - funzione quadratica

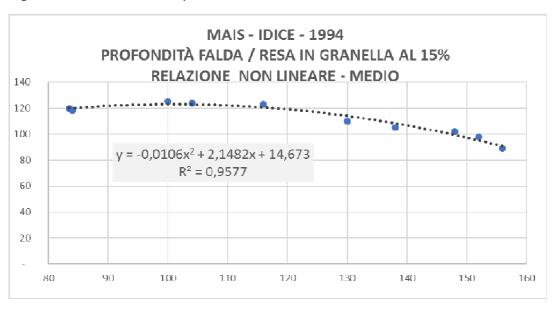


Grafico 55: Mais - funzione quadratica

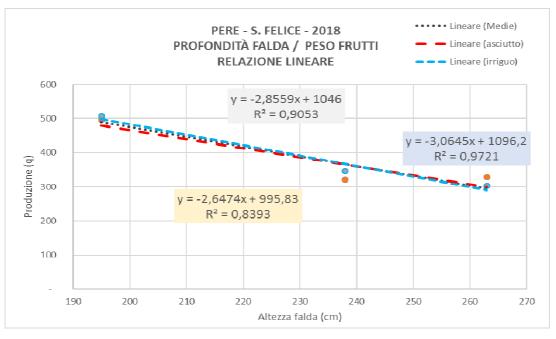


Grafico 56: Pero – funzione lineare

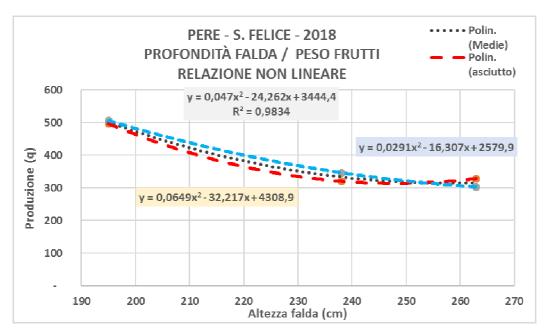


Grafico 57: Pero – funzione quadratica

Le funzioni sono stimate per un intervallo limitato di valori di profondità di falda che dipende dalla situazione esistente nei siti sperimentali.

Ogni funzione indicata genericamente come f' ha i seguenti indici precedentemente definiti: an,d,c,s,r, a cui si aggiunge un indice identificativo della funzione stessa (f1,f2,....) e informazioni che descrivono il sito sperimentale quando opportune (per le arboree):

- d1 distanza ortoganale tra le piante
- d2 distanza longitudinale tra le piante
- n piante ha, quantifica il numero di piante per ettaro
- n_piante_mis, quantifica il numero di piante misurate

i seguenti due parametri sono invece sempre richiesti:

- area, quantifica la superficie di riferimento della funzione
- coef_ha. permette di passare dal valore stimato che per le arboree è riferito ad alcune piante, alla produzione per ettaro

Seguono i parametri che rappresentano i coefficienti della funzione, in numero diverso se lineare, quadratica o di terzo grado.

- Il primo 'int' indica sempre il valore dell'intercetta con l'asse delle produzioni;
- il secondo 'coef1' il coefficiente di grado uno;
- il terzo 'coef2' il coefficiente di secondo grado presente solo nelle funzioni quadratiche;
- il quarto 'coef3' il coefficiente di terzo grado presente solo nelle funzioni di grado tre, finora non utiizzate:
- 'x mi' indica la quota minore di falda;
- 'x ma' indica la quota maggiore di falda.

Le funzioni sono inserite nel programma mediante una tabella riportata di seguito.

+	an	sito	coltura	v	L	d1	d2	area	n_piante_ha	n_piante_mis	coef_ha	in	coef1	coef2	×_mi	x_ma
f1	2018	MO_S_Felice	pero	m_i	asc	4	2	8	1250	2	6.25	995.83	-2.6474		190	270
f2	2018	MO_S_Felice	pero	m_i	med	4	2	8	1250	2	6.25	1046	-2.8559		190	270
f3	2018	MO_S_Felice	pero	m_i	irr	4	2	8	1250	2	6.25	1096.2	-3.0645		190	270
f4	2018	MO_S_Felice	pero	m_i	asc	4	2	8	1250	2	6.25	4308.9	-32.217	0.0649	190	270
f5	2018	MO_S_Felice	pero	m_i	med	4	2	8	1250	2	6.25	3444.4	-24.262	0.047	190	270
f6	2018	MO_S_Felice	pero	m_i	irr	4	2	8	1250	2	6.25	2579.9	-16.307	0.0291	190	270
f7	1994	BO_Idice	mais	m_i	med			10000			1	159.38	-0.3961		80	160
f8	1994	BO_Idice	mais	m_i	med			10000			1	14.673	2.1482	-0.0106	80	160

Tabella 12: Funzioni stimate nei siti sperimentali

Le precedenti funzioni sono tutte riferite a suoli di medio impasto.

È stato pertanto necessario definire delle tabelle di collegamento che permettessero di estendere i risultati ad una più ampia casistica produttiva:

- una prima tabella collega colture simili ed è definita c_simili(c,c). Viene scritta e letta dall'archivio: colture_simili.txt. Attualmente il collegamento è tra pero e melo;
- una seconda tabella permette di adattare le funzioni a diverse qualità di suolo, l'archivio q_varia_suolo contiene i coefficienti di variazione rispetto alla funzione di riferimento;

f	s	int	coef1	coef2
f1	sci	0.93	1.1	
f1	arg	1.05	0.95	
f2	sci	0.93	1.1	
f2	arg	1.05	0.95	
f3	sci	0.93	1.1	
f3	arg	1.05	0.95	
f4	sci	0.98	1.01	1.03
f4	arg	1.03	0.99	0.97
f5	sci	0.98	1.01	1.03
f5	arg	1.03	0.99	0.97
f6	sci	0.98	1.01	1.03
f6	arg	1.03	0.99	0.97
f7	sci	0.97	1.26	
f7	arg	1.03	0.8	
f8	sci	0.97	1.05	1.18
f8	arg	1.03	1.043	0.96

Tabella 13: Coefficienti di variazione delle funzioni per tipo di suolo

• una terza tabella collega siti sperimentali ed ambiti produttivi d_simili(d,d) è salvata nell'archivio dove_simili.txt. Le relazioni sono le seguenti:

Zona produttiva	sito sperimentale
z1	MO_S_Felice
z1	BO_Idice

La contemporanea considerazione dei precedenti elementi ha permesso di stimare le produzioni in funzione della profondità di falda. Le funzioni lineare o quadratiche sono riportate nell'archivio: f_produzione_profondita.csv di seguito riportate.

12 12 13 14 15 15 15 15 15 15 15		2	_	coltura	terreno	regime			æ	n_piante_ha	n_piante_mis	coef_ha		coef1	Ę	i c	па
1 2018 MO_S_Felice pero m_i ssc 4 2 8 1250 2 6.25 995,8300 2,6474 190,170 1 2018 MO_S_Felice melo sci ssc 4 2 8 1250 2 6.25 995,8300 2,2474 190,170 1 2018 MO_S_Felice melo sci ssc 4 2 8 1250 2 6.25 995,8300 2,2474 190,170 1 2018 MO_S_Felice melo sri ssc 4 2 8 1250 2 6.25 995,8300 2,2674 190,170 2 2018 MO_S_Felice melo sri ssc 4 2 8 1250 2 6.25 995,8300 2,2674 190,170 2 2018 MO_S_Felice pero sri med 4 2 8 1250 2 6.25 1045,6215 2,2155 0,100 270 2 2018 MO_S_Felice pero sri med 4 2 8 1250 2 6.25 1045,6215 2,2150 0,100 270 2 2018 MO_S_Felice pero sri med 4 2 8 1250 2 6.25 1045,6000 2,26559 190,170 2 2018 MO_S_Felice pero sri med 4 2 8 1250 2 6.25 1098,2000 2,7131 190,170 2 2018 MO_S_Felice melo sri med 4 2 8 1250 2 6.25 1098,2000 2,7131 190,170 2 2018 MO_S_Felice pero sri med 4 2 8 1250 2 6.25 1098,2000 2,7131 190,170 3 2018 MO_S_Felice pero sri mr 4 2 8 1250 2 6.25 1098,2000 2,7131 190,170 3 2018 MO_S_Felice pero sri mr 4 2 8 1250 2 6.25 1098,2000 2,7131 190,170 3 2018 MO_S_Felice pero sri mr 4 2 8 1250 2 6.25 1098,2000 2,7131 190,170 3 2018 MO_S_Felice pero sri mr 4 2 8 1250 2 6.25 1098,2000 3,0645 190,170 190,170 3 2018 MO_S_Felice pero sri mr 4 2 8 1250 2 6.25 1098,2000 3,0645 190,170 190,170 3 2018 MO_S_Felice pero sri mr 4 2 8 1250 2 6.25 1098,2000 3,0645 190,170 190,170 3 2018 MO_S_Felice pero sri mr 4 2 8 1250 2 6.25 1098,2000 3,0645 190,170 190,170 4 2018 MO_S_Felice pero sri mr 4 2 8 1250 2 6.25 1098,2000 3,0645 190,170 190,170 190,1			-		_ ter	reg -			a _	<u></u>	2 🔼	Š 🔽			90		
1 2018 MO S Felice melo mi asc 4 2 8 1250 2 6.25 1045,6215 2.5150 190 270 1 2018 MO S Felice melo mi asc 4 2 8 1250 2 6.25 926,1219 2.9121 190 270 1 2018 MO S Felice melo mi asc 4 2 8 1250 2 6.25 998,8300 2.6474 190 270 1 2018 MO S Felice melo mi asc 4 2 8 1250 2 6.25 1045,6215 2.5150 190 270 2 2018 MO S Felice melo arg asc 4 2 8 1250 2 6.25 1045,6215 2.5150 190 270 2 2018 MO S Felice pero arg med 4 2 8 1250 2 6.25 1046,0000 2.8859 190 270 2 2018 MO S Felice melo sci med 4 2 8 1250 2 6.25 1046,0000 2.8859 190 270 2 2018 MO S Felice melo sci med 4 2 8 1250 2 6.25 1046,0000 2.8859 190 270 2 2018 MO S Felice melo sci med 4 2 8 1250 2 6.25 1046,0000 2.8859 190 270 2 2018 MO S Felice melo sci med 4 2 8 1250 2 6.25 1046,0000 2.8859 190 270 3 2018 MO S Felice melo arg med 4 2 8 1250 2 6.25 1046,0000 2.8859 190 270 3 2018 MO S Felice pero sci irr 4 2 8 1250 2 6.25 1046,0000 2.8859 190 270 3 2018 MO S Felice pero arg irr 4 2 8 1250 2 6.25 1019,4660 3.3710 190 270 3 2018 MO S Felice melo sci irr 4 2 8 1250 2 6.25 1019,4660 3.3710 190 270 3 2018 MO S Felice melo sci irr 4 2 8 1250 2 6.25 1019,4660 3.3710 190 270 3 2018 MO S Felice melo sci irr 4 2 8 1250 2 6.25 1019,4660 3.3710 190 270 3 2018 MO S Felice melo sci irr 4 2 8 1250 2 6.25 1019,4660 3.3710 190 270 3 2018 MO S Felice melo sci irr 4 2 8 1250 2 6.25 1019,460 3.3710 190 270 4 2018 MO S Felice melo sci irr 4 2 8 1250 2 6.25 1096,2000 3.0645 190 270 4 2018 MO S Fe																	
1 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 995,8300 -2.6474 190 270		_															_
1 2018 MO_S_Felice melo m_i asc 4 2 8 1250 2 6.25 995,8300 -2,6474 190 270 2		_															_
1018 MO_S_Felice melo arg asc 4 2 8 1250 2 6.25 1045.6215 -2.5150 109 270 27		_															
12 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 972.7800 - 3.1415 med 92.70 12 2018 MO_S_Felice pero m_i med 4 2 8 1250 2 6.25 1046.0000 2.85559 med 90.270 13 2018 MO_S_Felice melo sci med 4 2 8 1250 2 6.25 1098.3000 - 2.7131 med 190.270 14 2018 MO_S_Felice melo sci med 4 2 8 1250 2 6.25 1046.0000 - 2.8559 med 190.270 15 2018 MO_S_Felice melo sci med 4 2 8 1250 2 6.25 1098.3000 - 2.7131 med 190.270 16 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 1046.0000 - 2.8559 med 190.270 17 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 1046.0000 - 2.8559 med 190.270 18 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 1046.0000 - 3.0454 med 190.270 18 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 1098.3000 - 2.7131 med 190.270 18 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 1096.2000 - 3.0454 med 190.270 18 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 1510.1010 - 2.9113 med 190.270 18 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 1096.2000 - 3.0454 med 190.270 19 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 1096.2000 - 3.0454 med 190.270 19 2018 MO_S_Felice pero arg arc 4 2 8 1250 2 6.25 4388.670 - 3.3140 med 190.270 19 2018 MO_S_Felice pero arg arc 4 2 8 1250 2 6.25 4388.670 - 3.31498 med 190.270 19 2018 MO_S_Felice melo m_i arc 4 2 8 1250 2 6.25 4388.670 - 3.8488 med 190.270 19 2018 MO_S_Felice melo m_i arc 4 2 8 1250 2 6.25 4388.670 - 3.8488 med 190.270 190.270 19 2018 MO_S_Felice pero arg arc 4 2 8 1250 2 6.		-														_	_
12 2018 MO_S_Felice pero m_i med 4 2 8 1250 2 6.25 1046.0000 -2.8559 190 270 12 2018 MO_S_Felice pero arg med 4 2 8 1250 2 6.25 1046.0000 -2.8559 190 270 13 2018 MO_S_Felice melo m_i med 4 2 8 1250 2 6.25 972.7800 -3.1415 190 270 14 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 1098.3000 -2.7131 190 270 15 2018 MO_S_Felice pero arg med 4 2 8 1250 2 6.25 1098.3000 -2.7131 190 270 16 2018 MO_S_Felice pero sci irr 4 2 8 1250 2 6.25 1098.3000 -2.7131 190 270 17 2018 MO_S_Felice pero sci irr 4 2 8 1250 2 6.25 1098.6000 -3.0645 190 270 18 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 1098.6000 -3.0645 190 270 19 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 1019.4660 -3.3710 190 270 19 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 1019.4660 -3.3710 190 270 19 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 1019.4660 -3.3710 190 270 19 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 1019.4660 -3.3710 190 270 19 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 1215.1010 -2.9113 190 270 19 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 125.0100 -3.0645 190 270 10 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 4222.7220 -32.5392 0.0668 190 270 10 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 4381.670 -31.8948 0.0630 190 270 10 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 4381.670 -31.8948 0.0630 190 270 15 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 3473.7320 -24.094 0.0456 190 270 15 2018		-															
1018 MO_S_Felice pero arg med 4 2 8 1250 2 6.25 1098.3000 2.7131 190 270 12 2018 MO_S_Felice melo m_i med 4 2 8 1250 2 6.25 1046.0000 2.8559 190 270 12 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 1046.0000 2.8559 190 270 13 2018 MO_S_Felice pero sci irr 4 2 8 1250 2 6.25 1098.3000 2.7131 190 270 13 2018 MO_S_Felice pero sci irr 4 2 8 1250 2 6.25 1098.3000 2.7131 190 270 13 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 1098.6000 3.30645 190 270 13 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 1096.2000 3.30645 190 270 13 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 1096.2000 3.30645 190 270 13 2018 MO_S_Felice melo m_i irr 4 2 8 1250 2 6.25 1096.2000 3.30645 190 270 14 2018 MO_S_Felice pero m_i asc 4 2 8 1250 2 6.25 1096.2000 3.30645 190 270 14 2018 MO_S_Felice pero m_i asc 4 2 8 1250 2 6.25 1096.2000 3.30645 190 270 14 2018 MO_S_Felice pero m_i asc 4 2 8 1250 2 6.25 4222.7220 32.5392 0.0668 190 270 14 2018 MO_S_Felice pero m_i asc 4 2 8 1250 2 6.25 4222.7220 32.5392 0.0668 190 270 15 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 4222.7220 32.5392 0.0668 190 270 15 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 338.9000 32.2170 0.0669 190 270 15 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 338.9000 32.2170 0.0669 190 270 15 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 338.9000 32.2170 0.0669 190 270 15 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 344.4000 32.2170 0.0669 190 270		-														_	
12 2018 MO_S_Felice melo m. med 4 2 8 1250 2 6.25 972.7800 -3.1415 190 270 12 2018 MO_S_Felice melo m. med 4 2 8 1250 2 6.25 1046.0000 -2.8559 190 270 13 2018 MO_S_Felice pero sci rr 4 2 8 1250 2 6.25 1098.3000 -2.7131 190 270 14 2018 MO_S_Felice pero m. irr 4 2 8 1250 2 6.25 1091.4660 -3.3710 -3.0645 190 270 15 2018 MO_S_Felice pero m. irr 4 2 8 1250 2 6.25 1151.0100 -2.9113 -190 270 15 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 1151.0100 -2.9113 -190 270 15 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 1151.0100 -2.9113 -190 270 16 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 1151.0100 -2.9113 -190 270 17 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 1151.0100 -2.9113 -190 270 18 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 1151.0100 -2.9113 -190 270 18 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 1227.7200 -325.392 .0.0668 190 270 18 2018 MO_S_Felice pero arg asc 4 2 8 1250 2 6.25 4381.670 -31.8948 .0.0630 190 270 18 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 4438.1670 -31.8948 .0.0630 190 270 18 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 3448.1670 -31.8948 .0.0630 190 270 19 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 3448.1670 -31.8948 .0.0630 190 270 19 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 3448.1670 -31.8948 .0.0630 190 270 15 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 3448.1670 -31.8948 .0.0630 190 270 15 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.2		-															
The color of the	f2	2018				med	4	2	8	1250	2	6.25	972.7800	- 3.1415		190	270
Fig. 2018 MO_S_Felice pero sci irr	f2	2018	MO_S_Felice	melo	m_i	med	4	2	8	1250	2	6.25	1 046.0000	- 2.8559		190	270
Fig. 2018 MO_S_Felice pero m_i irr	f2	2018	MO_S_Felice	melo	arg	med	4	2	8	1250	2	6.25	1 098.3000	- 2.7131		190	270
f3 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 1151.0100 - 2.9113 190 270 f3 2018 MO_S_Felice melo sri 4 2 8 1250 2 6.25 1191.94660 - 3.3710 190 270 f3 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 1191.04600 - 3.0645 190 270 f4 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 422.722 32.5392 0.0668 190 270 f4 2018 MO_S_Felice pero arg asc 4 2 8 1250 2 6.25 4 308.900 -32.2170 0.0649 190 270 f4 2018 MO_S_Felice melo sci asc 4 <t< td=""><td>f3</td><td>2018</td><td>MO_S_Felice</td><td>pero</td><td>sci</td><td>irr</td><td>4</td><td>2</td><td>8</td><td>1250</td><td>2</td><td>6.25</td><td>1 019.4660</td><td>- 3.3710</td><td></td><td>190</td><td>270</td></t<>	f3	2018	MO_S_Felice	pero	sci	irr	4	2	8	1250	2	6.25	1 019.4660	- 3.3710		190	270
f3 2018 MO_S_Felice melo melo sci irr 4 2 8 1250 2 6.25 1019.4660 -3.3710 190 270 f3 2018 MO_S_Felice melo mj irr 4 2 8 1250 2 6.25 1096.2000 -3.0645 190 270 f4 2018 MO_S_Felice melo asc 4 2 8 1250 2 6.25 1515.0100 -2.9113 190 270 f4 2018 MO_S_Felice pero mj asc 4 2 8 1250 2 6.25 422.7220 -32.5392 0.0668 190 270 f4 2018 MO_S_Felice pero arg asc 4 2 8 1250 2 6.25 423.722 -32.5392 0.0668 190 270 f4 2018 MO_S_Felice melo mj asc 4 2	f3	2018	MO_S_Felice	pero	m_i	irr	4			1250	2	6.25	1 096.2000	- 3.0645		_	
f3 2018 MO_S_Felice melo melo m_i irr 4 2 8 1250 2 6.25 1 096,2000 -3.0645 190 270 f3 2018 MO_S_Felice pero grir 4 2 8 1250 2 6.25 1 211,01,010 -2.9113 190 270 f4 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 4 282,7220 -32.5392 0.0668 190 270 f4 2018 MO_S_Felice pero arg asc 4 2 8 1250 2 6.25 4 438,1670 -31.8948 0.0630 190 270 f4 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 4 438,1670 -31.8948 0.0630 190 270 f5 2018 MO_S_Felice melo arg asc 4 2 8 1250					arg												
f3 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 1151.0100 - 2.9113 190 270 f4 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 4 220.7220 -32.5392 0.0668 190 270 f4 2018 MO_S_Felice pero m_i asc 4 2 8 1250 2 6.25 4 438.1670 -31.8948 0.0630 190 270 f4 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 4 438.1670 -31.8948 0.0630 190 270 f4 2018 MO_S_Felice melo m_i asc 4 2 8 1250 2 6.25 4 438.1670 -31.8948 0.0630 190 270 f4 2018 MO_S_Felice melo arg 8 1250 2	_				sci				-								_
f4 2018 MO_S_Felice pero sci asc 4 2 8 1250 2 6.25 4 22.7220 -32.5392 0.0668 190 270 f4 2018 MO_S_Felice pero m_i asc 4 2 8 1250 2 6.25 4 308,9000 -32.2170 0.0649 190 270 f4 2018 MO_S_Felice pero arg asc 4 2 8 1250 2 6.25 4 438.1670 -31.8948 0.0630 190 270 f4 2018 MO_S_Felice melo arg asc 4 2 8 1250 2 6.25 4 308.9000 -32.2170 0.0649 190 270 f4 2018 MO_S_Felice melo arg asc 4 2 8 1250 2 6.25 4 308.9000 -32.2170 0.0649 190 270 f5 2018 MO_S_Felice<	_															_	_
f4 2018 MO_S_Felice pero m_i asc 4 2 8 1250 2 6.25 4 308.9000 -32.2170 0.0649 190 270 f4 2018 MO_S_Felice melo asc 4 2 8 1250 2 6.25 4 438.1670 -31.8948 0.0630 190 270 f4 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 4 222.7220 -32.5392 0.0668 190 270 f4 2018 MO_S_Felice melo mi asc 4 2 8 1250 2 6.25 4 308.9000 -32.2170 0.0649 190 270 f4 2018 MO_S_Felice melo arg asc 4 2 8 1250 2 6.25 3 375.5120 -24.5046 0.0484 190 270 f5 2018 MO_S_Felice pero mi med		_															
f4 2018 MO_S_Felice pero arg asc 4 2 8 1250 2 6.25 4 438.1670 -31.8948 0.0630 190 270 f4 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 4 238.1670 -31.8948 0.0630 190 270 f4 2018 MO_S_Felice melo mi asc 4 2 8 1250 2 6.25 4 308.9000 -32.2170 0.0649 190 270 f4 2018 MO_S_Felice melo arg asc 4 2 8 1250 2 6.25 4 438.1670 -31.8948 0.0630 190 270 f5 2018 MO_S_Felice melo ari med 4 2 8 1250 2 6.25 3 443.1670 -31.8948 0.0630 190 270 f5 2018 MO_S_Felice pero sci med 4 <td></td>																	
f4 2018 MO_S_Felice melo sci asc 4 2 8 1250 2 6.25 4 222.7220 -32.5392 0.0668 190 270 f4 2018 MO_S_Felice melo m_i asc 4 2 8 1250 2 6.25 4 308.9000 -32.2170 0.0649 190 270 f5 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 4 438.1670 -31.8948 0.0630 190 270 f5 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 f5 2018 MO_S_Felice pero arg med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 f5 2018 MO_S_Felice																_	_
f4 2018 MO_S_Felice melo melo m_i asc 4 2 8 1250 2 6.25 4 308.9000 -32.2170 0.0649 190 270 f4 2018 MO_S_Felice pero melo arg asc 4 2 8 1250 2 6.25 4438.1670 -31.8948 0.0630 190 270 f5 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 3 375.5120 -24.5046 0.0484 190 270 f5 2018 MO_S_Felice pero arg med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0484 190 270 f5 2018 MO_S_Felice melo sci med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0484 190 270 f5 2018 MO_S_Felice melo <td></td> <td>_</td> <td></td>																_	
f4 2018 MO_S_Felice melo arg asc 4 2 8 1250 2 6.25 4 438.1670 -31.8948 0.0630 190 270 f5 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 3 375.5120 -24.5046 0.0484 190 270 f5 2018 MO_S_Felice pero m_i med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 f5 2018 MO_S_Felice pero arg med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 f5 2018 MO_S_Felice melo sci med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 f5 2018 MO_S_Felice		_															
F5 2018 MO_S_Felice pero sci med 4 2 8 1250 2 6.25 3 375.5120 -24.5046 0.0484 190 270 F5 2018 MO_S_Felice pero m_i med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 F5 2018 MO_S_Felice pero arg med 4 2 8 1250 2 6.25 3 547.7320 -24.0194 0.0456 190 270 F5 2018 MO_S_Felice melo sci med 4 2 8 1250 2 6.25 3 375.5120 -24.5046 0.0484 190 270 F5 2018 MO_S_Felice melo m_i med 4 2 8 1250 2 6.25 3 375.5120 -24.5046 0.0484 190 270 F5 2018 MO_S_Felice melo m_i med 4 2 8 1250 2 6.25 3 344.4000 -24.2620 0.0470 190 270 F6 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 3 547.7320 -24.0194 0.0456 190 270 F6 2018 MO_S_Felice pero sci irr 4 2 8 1250 2 6.25 3 547.7320 -24.0194 0.0456 190 270 F6 2018 MO_S_Felice pero m_i irr 4 2 8 1250 2 6.25 2 528.3020 -16.4701 0.0300 190 270 F6 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 F6 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 2 528.3020 -16.4701 0.0300 190 270 F6 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 F6 2018 MO_S_Felice melo m_i irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 F6 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 2 579.9000 -16.4701 0.0300 190 270 F6 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 2 579.9000 -16.4701 0.0300 190 270 F6 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 2 579.9000 -16.4701 0.0300 190 270 F7 1994 BO_Idice mais sci med 10000 1.000 1.000 1.000 1.000 1.000 1.					_												
f5 2018 MO_S_Felice pero m_i med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 f5 2018 MO_S_Felice pero arg med 4 2 8 1250 2 6.25 3 547.7320 -24.0194 0.0456 190 270 f5 2018 MO_S_Felice melo sci med 4 2 8 1250 2 6.25 3 375.5120 -24.5046 0.0484 190 270 f5 2018 MO_S_Felice melo m_i med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 f5 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 2 528.3020 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice					_												
f5 2018 MO_S_Felice pero arg med 4 2 8 1250 2 6.25 3 547.7320 -24.0194 0.0456 190 270 f5 2018 MO_S_Felice melo sci med 4 2 8 1250 2 6.25 3 375.5120 -24.5046 0.0484 190 270 f5 2018 MO_S_Felice melo m_i med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 f5 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 3 547.7320 -24.0194 0.0456 190 270 f6 2018 MO_S_Felice pero sci irr 4 2 8 1250 2 6.25 2 579.9000 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice pero arg irr 4 2 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></th<>																	_
f5 2018 MO_S_Felice melo sci med 4 2 8 1250 2 6.25 3 375.5120 -24.5046 0.0484 190 270 f5 2018 MO_S_Felice melo m_i med 4 2 8 1250 2 6.25 3 444.4000 -24.2620 0.0470 190 270 f5 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 3 547.7320 -24.0194 0.0456 190 270 f6 2018 MO_S_Felice pero sci irr 4 2 8 1250 2 6.25 2 528.3020 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 2 579.9000 -16.439 0.0282 190 270 f6 2018 MO_S_Felice<	_															_	_
f5 2018 MO_S_Felice melo arg med 4 2 8 1250 2 6.25 3 547.7320 -24.0194 0.0456 190 270 f6 2018 MO_S_Felice pero sci irr 4 2 8 1250 2 6.25 2 528.3020 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice pero m_i irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 f6 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 2 677.2970 -16.1439 0.0282 190 270 f6 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 2 578.9000 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice																	
f6 2018 MO_S_Felice pero sci irr 4 2 8 1250 2 6.25 2 528.3020 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice pero m_i irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 f6 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 2 677.2970 -16.1439 0.0282 190 270 f6 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 2 578.9000 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice melo m_i irr 4 2 8 1250 2 6.25 2 579.9000 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice melo m_i irr 4 2	f5	2018	MO_S_Felice	melo	m_i	med	4	2	8	1250	2	6.25	3 444.4000	-24.2620	0.0470	190	270
f6 2018 MO_S_Felice pero m_i irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 f6 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 2 657.2970 -16.1439 0.0282 190 270 f6 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 2 528.3020 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice melo mci irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 f6 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 2 579.9000 -16.4701 0.0301 190 270 f7 1994 BO_Idice mais sci med 10000	f5	2018	MO_S_Felice	melo	arg	med	4	2	8	1250	2	6.25	3 547.7320	-24.0194	0.0456	190	270
f6 2018 MO_S_Felice pero arg irr 4 2 8 1250 2 6.25 2 657.2970 -16.1439 0.0282 190 270 f6 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 2 528.3020 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice melo m_i irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 f6 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 2 579.9000 -16.439 0.0282 190 270 f6 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 2 672.2970 -16.1439 0.0282 190 270 f7 1994 BO_Idice <td>f6</td> <td>2018</td> <td>MO_S_Felice</td> <td>pero</td> <td>sci</td> <td>irr</td> <td>4</td> <td>2</td> <td>8</td> <td>1250</td> <td>2</td> <td>6.25</td> <td>2 528.3020</td> <td>-16.4701</td> <td>0.0300</td> <td>190</td> <td>270</td>	f6	2018	MO_S_Felice	pero	sci	irr	4	2	8	1250	2	6.25	2 528.3020	-16.4701	0.0300	190	270
f6 2018 MO_S_Felice melo sci irr 4 2 8 1250 2 6.25 2 528.3020 -16.4701 0.0300 190 270 f6 2018 MO_S_Felice melo melo irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 f6 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 2 579.9000 -16.4701 0.0291 190 270 f7 1994 BO_Idice mais sci med 10000 1.00 154.5986 - 0.4991 80 160 f7 1994 BO_Idice mais m_i med 10000 1.00 159.3800 - 0.3961 80 160 f8 1994 BO_Idice mais sci med 10000 1.00 164.1614 - 0.3169 80 160 f8 1994	f6	2018	MO_S_Felice	pero	m_i	irr	4	2	8	1250	2	6.25	2 579.9000	-16.3070	0.0291	190	270
f6 2018 MO_S_Felice melo m_i irr 4 2 8 1250 2 6.25 2 579.9000 -16.3070 0.0291 190 270 f6 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 2 657.2970 -16.1439 0.0282 190 270 f7 1994 BO_Idice mais sci med 10000 1.00 154.5986 - 0.4991 80 160 f7 1994 BO_Idice mais m_i med 10000 1.00 159.3800 - 0.3961 80 160 f8 1994 BO_Idice mais arg med 10000 1.00 164.1614 - 0.3169 80 160 f8 1994 BO_Idice mais sci med 10000 1.00 14.2328 2.2556 -0.0125 80 160 f8 1994 BO_Idice mais m	f6	2018	MO_S_Felice	pero	arg	irr	4			1250		6.25	2 657.2970	-16.1439	0.0282	190	270
f6 2018 MO_S_Felice melo arg irr 4 2 8 1250 2 6.25 2 657.2970 -16.1439 0.0282 190 270 f7 1994 BO_Idice mais sci med 10000 1.00 154.5986 - 0.4991 80 160 f7 1994 BO_Idice mais med 10000 1.00 159.3800 - 0.3961 80 160 f8 1994 BO_Idice mais arg med 10000 1.00 164.1614 - 0.3169 80 160 f8 1994 BO_Idice mais sci med 10000 1.00 14.2328 2.2556 -0.0125 80 160 f8 1994 BO_Idice mais m_i med 10000 1.00 14.6730 2.1482 -0.0106 80 160																_	_
f7 1994 BO_ldice mais sci med 10000 1.00 154.5986 - 0.4991 80 160 f7 1994 BO_ldice mais m_i med 10000 1.00 159.3800 - 0.3961 80 160 f7 1994 BO_ldice mais arg med 10000 1.00 164.1614 - 0.3169 80 160 f8 1994 BO_ldice mais sci med 10000 1.00 14.2328 2.2556 -0.0125 80 160 f8 1994 BO_ldice mais m_i med 10000 1.00 14.6730 2.1482 -0.0106 80 160		_			m_i	irr			-								
f7 1994 BO_ldice mais m_i med 10000 1.00 159.3800 - 0.3961 80 160 f7 1994 BO_ldice mais arg med 10000 1.00 164.1614 - 0.3169 80 160 f8 1994 BO_ldice mais sci med 10000 1.00 14.2328 2.2556 -0.0125 80 160 f8 1994 BO_ldice mais m_i med 10000 1.00 14.6730 2.1482 -0.0106 80 160	_				-		4	2		1250	2				0.0282	_	
f7 1994 BO_Idice mais arg med 10000 1.00 164.1614 - 0.3169 80 160 f8 1994 BO_Idice mais sci med 10000 1.00 14.2328 2.2556 -0.0125 80 160 f8 1994 BO_Idice mais m_i med 10000 1.00 14.6730 2.1482 -0.0106 80 160																	
f8 1994 BO_Idice mais sci med 10000 1.00 14.2328 2.2556 -0.0125 80 160 f8 1994 BO_Idice mais m_i med 10000 1.00 14.6730 2.1482 -0.0106 80 160																	
f8 1994 BO_ldice mais m_i med 10000 1.00 14.6730 2.1482 -0.0106 80 160					-										0.0125		
	_																

Tabella 14: funzioni di produzione - profondità di falda

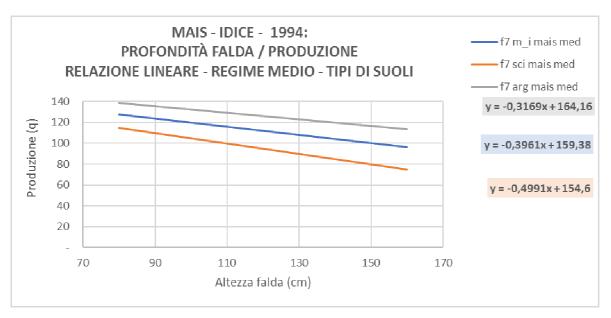


Grafico 58: Mais per tipo di suoli lineare

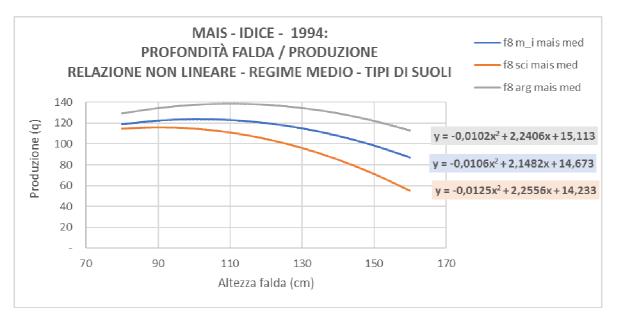


Grafico 59: Mais per tipo di suoli quadratica

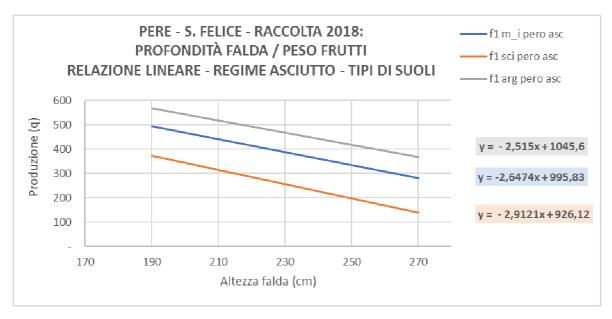


Grafico 60: Pero non irriguo - per tipo di suoli lineare

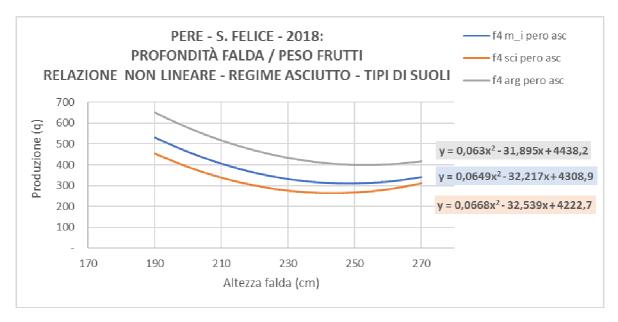


Grafico 61: Pero non irriguo - per tipo di suoli quadratica

Le precedenti funzioni sono state applicate a un gruppo di appezzamenti diversi per coltura, tipo di suolo, regime irriguo, localizzazione e profondità di falda tutti nella zona produttiva 'z1'.

appezzamento	suolo	coltura 💌	regime 🔼	Н
a1	sci	pero	asc	241.45
a2	arg	pero	asc	241.45
a3	m_i	pero	asc	241.45
a4	m_i	pero	irr	247.76
a5	m_i	pero	asc	194.63
a6	sci	pero	asc	242.31
a7	m_i	pero	irr	198.83
a8	arg	pero	irr	204.39
a9	sci	pero	asc	271.37
a10	m_i	pero	asc	235.55
a11	arg	melo	asc	263.17
a12	m_i	melo	asc	246.69
a13	arg	melo	asc	224.17
a14	arg	melo	irr	253.98
a15	sci	melo	asc	238.62
a16	m_i	melo	irr	199.21
a17	sci	melo	asc	197.07
a18	m_i	melo	asc	259.23
a19	m_i	melo	irr	252.91
a20	m_i	melo	asc	230.42
a21	m_i	mais	med	90.03
a22	m_i	mais	med	120.64
a23	arg	mais	med	155.08
a24	sci	mais	med	132.17
a25	m_i	mais	med	94.42
a26	arg	mais	med	102.83
a27	sci	mais	med	140.66
a28	m_i	mais	med	160.71
a29	arg	mais	med	122.33
a30	m_i	mais	med	98.03

Tabella 15: Appezzamenti di esempio

La stima del beneficio ha richiesto la stima di prezzi di riferimento, a tal fine per ogni coltura vengono individuati un prezzo minimo, uno medio e uno massimo.

coltura	mi	me	ma
pero	14.4	18	21.6
melo	19.55	23	26.45
mais	11.48	14	16.52

Tabella 16: Prezzi per coltura (Euro/q)

L'applicazione delle precedenti funzioni ai valori dei siti ha permesso di stimare i benefici riportati nella seguente tabella.

	•					tale												
e .	pezzamento	9	coltura	regime	, nzione	_sperimentale												
-	Ē	90118	3 -	ğ	-	sito	н	Q	Q_Hma	Q_var	mi	me	ma	int	coef1	coef2	H_mi	H_ma
z1	a1	sci	pero	asc	f1	MO_S_Felice	241.45	222.98	139.84	83.13	1 197	1 496	1 796	926.1219	- 2.9121		190	270
z1	a1	sci	pero	asc	f4	MO_S_Felice	241.45	263.19	310.29	(47.10)		- 848	-1017	4 222.7220	-32.5392	0.0668	190	270
z1	a2	arg	pero	asc	f1	MO_S_Felice	241.45	438.36	366.56	71.80	1 034	1 292	1 551	1 045.6215	- 2.5150	0.000	190	270
z1 z1	a2 a3	arg m_i	pero pero	asc	f4 f1	MO_S_Felice MO_S_Felice	241.45 241.45	407.20 356.61	415.84 281.03	(8.64) 75.58	- 124 1 088	- 156 1 360	- 187 1 632	4 438.1670 995.8300	-31.8948 - 2.6474	0.0630	190 190	270 270
z1	a3	m_i	pero	asc	f4	MO_S_Felice	241.45	313.65	341.52	(27.87)		- 502	- 602	4 308.9000	- 32.2170	0.0649	190	270
z1	a4	m_i	pero	irr	f3	MO_S_Felice	247.76	336.94	268.79	68.16	981	1 227	1 472	1 096.2000	- 3.0645	0.0015	190	270
z1	a4	m_i	pero	irr	f6	MO_S_Felice	247.76	325.98	298.40	27.58	397	497	596	2 579.9000	-16.3070	0.0291	190	270
z1	a5	m_i	pero	asc	f1	MO_S_Felice	194.63	480.56	281.03	199.53	2 873	3 591	4 310	995.8300	- 2.6474		190	270
z1	a5	m_i	pero	asc	f4	MO_S_Felice	194.63	496.95	341.52	155.43	2 238	2 798	3 357	4 308.9000	-32.2170	0.0649	190	270
z1	a6	sci	pero	asc	f1	MO_S_Felice	242.31	220.49	139.84	80.65	1 161	1 452	1 742	926.1219	- 2.9121		190	270
z1	a6	sci	pero	asc .	f4	MO_S_Felice	242.31	263.02	310.29	(47.27)		- 851	-1 021	4 222.7220	-32.5392	0.0668	190	270
z1	a7	m_i	pero	irr	f3	MO_S_Felice	198.83	486.87	268.79	218.09	3 140	3 926	4 711	1 096.2000	- 3.0645	0.0004	190	270
z1 z1	a7	m_i	pero	irr	f6 f3	MO_S_Felice	198.83 204.39	487.98 555.99	298.40 364.97	189.58 191.02	2 730 2 751	3 412 3 438	4 095	2 579.9000	-16.3070 - 2.9113	0.0291	190 190	270 270
z1	a8 a8	arg	pero pero	irr	f6	MO_S_Felice MO_S_Felice	204.39	536.85	356.18	180.67	2 602	3 438	4 126 3 902	1 151.0100 2 657.2970	- 16.1439	0.0282	190	270
z1	a9	arg sci	pero	asc	f1	MO_S_Felice	271.37	330.05	330.18	100.07	2 002	3 232	3 302	2 037.2370	- 10.1439	0.0202	190	2/0
z1	a9	sci	pero	asc	f4	MO_S_Felice	271.37											
z1	a10	m_i	pero	asc	f1	MO_S_Felice	235.55	372.23	281.03	91.20	1 313	1 642	1 970	995.8300	- 2.6474		190	270
z1	a10	m_i	pero	asc	f4	MO_S_Felice	235.55	321.08	341.52	(20.44)		- 368	- 441	4 308.9000	-32.2170	0.0649	190	270
z1	a11	arg	melo	asc	f1	MO_S_Felice	263.17	383.74	366.56	17.18	336	395	454	1 045.6215	- 2.5150		190	270
z1	a11	arg	melo	asc	f4	MO_S_Felice	263.17	404.43	415.84	(11.41)		- 262	- 302	4 438.1670	-31.8948	0.0630	190	270
z1	a12	m_i	melo	asc	f1	MO_S_Felice	246.69	342.75	281.03	61.71	1 207	1 419	1 632	995.8300	- 2.6474		190	270
z1	a12	m_i	melo	asc	f4	MO_S_Felice	246.69	310.84	341.52	(30.68)		- 706	- 811	4 308.9000	-32.2170	0.0649	190	270
z1	a13	arg	melo	asc	f1	MO_S_Felice	224.17	481.83	366.56	115.27	2 254	2 651	3 049	1 045.6215	- 2.5150		190	270
z1	a13	arg	melo	asc	f4	MO_S_Felice	224.17	451.84	415.84	36.00	704	828	952	4 438.1670	-31.8948	0.0630	190	270
z1 z1	a14	arg	melo melo	irr irr	f3 f6	MO_S_Felice MO_S_Felice	253.98 253.98	411.60 377.86	364.97 356.18	46.63 21.68	912 424	1 072 499	1 233 573	1 151.0100 2 657.2970	- 2.9113 -16.1439	0.0282	190 190	270 270
z1	a14	sci	melo	asc	f1	MO_S_Felice	238.62	231.23	139.84	91.39	1 787	2 102	2 417	926.1219	- 2.9121	0.0282	190	270
z1	a15	sci	melo	asc	f4	MO_S_Felice	238.62	264.46	310.29	(45.83)		-1054	-1 212	4 222.7220	-32.5392	0.0668	190	270
z1	a16	m_i	melo	irr	f3	MO_S_Felice	199.21	485.73	268.79	216.95	4 241	4 990	5 738	1 096.2000	- 3.0645		190	270
z1	a16	m_i	melo	irr	f6	MO_S_Felice	199.21	486.22	298.40	187.82	3 672	4 320	4 968	2 579.9000	-16.3070	0.0291	190	270
z1	a17	sci	melo	asc	f1	MO_S_Felice	197.07	352.21	139.84	212.37	4 152	4 885	5 617	926.1219	- 2.9121		190	270
z1	a17	sci	melo	asc	f4	MO_S_Felice	197.07	406.31	310.29	96.02	1 877	2 208	2 540	4 222.7220	-32.5392	0.0668	190	270
z1	a18	m_i	melo	asc	f1	MO_S_Felice	259.23	309.55	281.03	28.52	558	656	754	995.8300	- 2.6474		190	270
z1	a18	m_i	melo	asc	f4	MO_S_Felice	259.23	318.58	341.52	(22.94)		- 528	- 607	4 308.9000	-32.2170	0.0649	190	270
z1	a19	m_i	melo	irr	f3	MO_S_Felice	252.91	321.16	268.79	52.38	1 024	1 205	1 385	1 096.2000	- 3.0645		190	270
z1	a19	m_i	melo	irr	f6	MO_S_Felice	252.91	317.04	298.40	18.64	364	429	493	2 579.9000	-16.3070	0.0291	190	270
z1 z1	a20 a20	m_i m i	melo melo	asc	f1 f4	MO_S_Felice MO_S Felice	230.42	385.81 331.21	281.03 341.52	104.78	2 048	2 410 - 237	2 771 - 273	995.8300 4 308.9000	- 2.6474 -32.2170	0.0649	190 190	270 270
z1	a20	m_i m_i	mais	med	f7	BO_Idice	90.03	123.72	96.00	27.71	318	388	458	159.3800	- 0.3961	0.0049	80	160
z1	a21	m i	mais	med	f8	BO_Idice	90.03	122.16	87.03	35.13	403	492	580	14.6730	2.1482	-0.0106	80	160
z1	a22	m_i	mais	med	f7	BO_Idice	120.64	111.60	96.00	15.59	179	218	258	159.3800	- 0.3961		80	160
z1	a22	m_i	mais	med	f8	BO_Idice	120.64	119.56	87.03	32.54	374	456	537	14.6730	2.1482	-0.0106	80	160
z1	a23	arg	mais	med	f7	BO_Idice	155.08	115.02	113.46	1.56	18	22	26	164.1614	- 0.3169		80	160
z1	a23	arg	mais	med	f8	BO_Idice	155.08	117.85	113.10	4.75	55	66	78	15.1132	2.2406	-0.0102	80	160
z1	a24	sci	mais	med	f7	BO_Idice	132.17	88.64	74.74	13.89	159	194	229	154.5986	- 0.4991		80	160
z1	a24	sci .	mais	med	f8	BO_Idice	132.17	93.86	54.93	38.93	447	545	643	14.2328	2.2556	-0.0125	80	160
z1	a25	m_i	mais	med	f7	BO_Idice	94.42	121.98	96.00	25.98	298	364	429	159.3800	- 0.3961	0.0100	80	160
z1	a25	m_i	mais	med	f8	BO_Idice	94.42	123.01	87.03	35.98	413	504	594	14.6730	2.1482	-0.0106	80	160
z1 z1	a26	arg	mais	med med	f7 f8	BO_Idice BO_Idice	102.83 102.83	131.58 137.91	113.46 113.10	18.11 24.81	208 285	254 347	299 410	164.1614 15.1132	- 0.3169 2.2406	-0.0102	80	160 160
z1	a27	sci	mais	med	f7	BO_Idice	140.66	84.40	74.74	9.65	111	135	159	154.5986	- 0.4991	0.0102	80	160
z1	a27	sci	mais	med	f8	BO_Idice	140.66	84.03	54.93	29.10	334	407	481	14.2328	2.2556	-0.0125	80	160
z1	a28	m_i	mais	med	f7	BO_Idice	160.71			2.20		1						
z1	a28	m_i	mais	med	f8	BO_Idice	160.71											
z1	a29	arg	mais	med	f7	BO_Idice	122.33	125.40	113.46	11.94	137	167	197	164.1614	- 0.3169		80	160
z1	a29	arg	mais	med	f8	BO_Idice	122.33	136.92	113.10	23.82	274	334	394	15.1132	2.2406	-0.0102	80	160
z1	a30	m_i	mais	med	f7	BO_Idice	98.03	120.55	96.00	24.55	282	344	406	159.3800	- 0.3961		80	160
z1	a30	m_i	mais	med	f8	BO_Idice	98.03	123.40	87.03	36.37	418	509	601	14.6730	2.1482	-0.0106	80	160

Tabella 17: Benefici stimati e relative funzioni produzione/falda

La precedente tabella evidenzia alcune righe vuote, si tratta di siti produttivi in cui la profondità di falda ha mostrato valori esterni a quelli osservati nei campi sperimentali. In queste situazioni le funzioni non possono essere applicate.

Particolare attenzione deve essere prestata al fatto che mentre le funzioni di grado uno, lineari presentano una relazione decrescente tra produzioni e profondità di falda, pertanto il minimo delle funzioni è sempre all'estremo destro, in corrispondenza del valore di falda minimo; diverso andamento hanno le funzioni non lineari, in questo caso il minimo si trova in corrispondenza di valori intermedi. Questa situazione comporta conseguenze non trascurabili.

ALLEGATO 29

STIMA DEL BENEFICIO DA FALDA IPODERMICA APPLICATA SUL TERRITORIO DI PIANURA REGIONALE

Immagini esemplificative dei passaggi operativi eseguiti per giungere al calcolo del c.d. beneficio da falda.

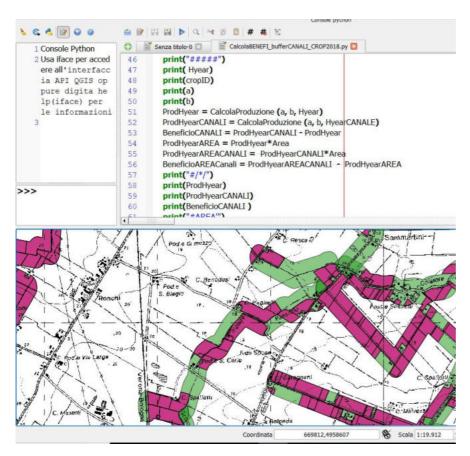


Figura 39: Intersezione GIS fra gli appezzamenti con colture irrigue secondo lo strato dell'uso agricolo del suolo AGREA (poligoni viola) e le fasce di pertinenza dei canali soggette a contributo di falda (in verde). In alto, parte dello script in codice Python per il calcolo del beneficio irriguo.

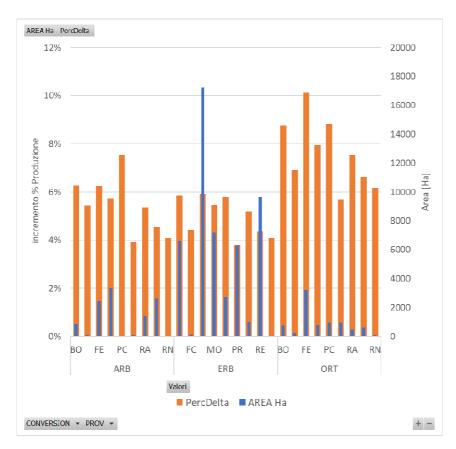


Grafico 62: stima per provincia della percentuale d'incremento di produzione determinata dall'innalzamento della falda in prossimità dei canali irrigui. Le colonne blu indicano la superficie totale in quella provincia interessata da colture irrigue; in arancione l'incremento percentuale.

Descrizione	Valore
Superficie irrigua totale di pianura	
(Ha)	575203
Superfici soggette a beneficio per	
innalzamento falda (Ha)	70080
% di superfici con beneficio sul totale	
irriguo	12,18%
Incremento medio di produzione per	
appezzamento (%)	7,30%
Maggior produzione totale per	
beneficio da falda (q.li)	157720
Stima prezzo medio (euro/q.le)	25
Stima totale incremento di PLV (euro)	3943000

Tabella 18: Statistiche valide per tutta la pianura emiliano-romagnola, relative all'estensione delle superfici interessate da beneficio per innalzamento di falda e conseguente stima dell'incremento medio di produzione.

Inquadramento

L'area oggetto del presente studio è ubicata nel Comune di Codigoro, in provincia di Ferrara (Figura 1).

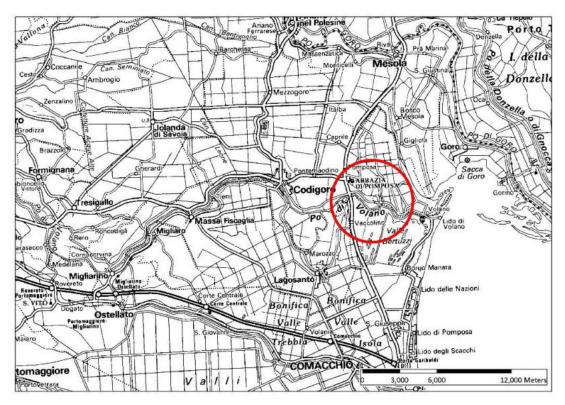


Figura 1 – Ubicazione dell'area di studio

Si tratta di un appezzamento di terreno molto ampio, adibito alla coltivazione di pere. La falda più superficiale in quest'area è caratterizzata da valori di salinità piuttosto elevati e dal momento che questa caratteristica può compromettere la produttività del sito, si è pensato di valutare l'eventuale contributo che può derivare dalla vicinanza con il corso del Po di Volano, che scorre lungo il confine dell'appezzamento in esame, a pochi metri dal pereto (Figura 2). Si tratta quindi di capire se il contributo del Fiume, il cui regime in questa zona è in stretta connessione con l'oscillazione del livello del mare, possa diluire la salinità della falda intercettata dagli apparati radicali o se, in determinati periodi dell'anno, possa influenzarla negativamente.

Dal punto di vista geologico, il sito in questione ricade nel Foglio n. 187 - Codigoro ed è ubicato nell'unità stratigrafica AES8a (Unità di Modena di età olocenica, post Romana); il sistema deposizionale è quello delle sabbie di riempimento di canale distributore, caratterizzate da sabbie da medie a fini, localmente ricoperte da argille e limi d'abbandono fluviale.

La distribuzione delle litologie è caratterizzata da porzioni più o meno sabbiose che si interdigitano tra loro in modo complesso. Le fasce più chiare ben visibili in figura 2 a sud del Po di Volano, con andamento grossomodo nord sud, rappresentano parte della cuspide deltizia di questo Fiume. Queste porzioni sono costituite da tessiture più sabbiose rispetto alle fasce più scure che le separano. La geologia di superficie della zona a nord del Volano, in cui si sviluppa il pereto, pare essere più influenzata dal sistema meandriforme del fiume, tuttavia, anche in questo caso è verosimile prevedere una certa variabilità complessiva del sito rispetto alla distribuzione delle tessiture grossolane e fini.

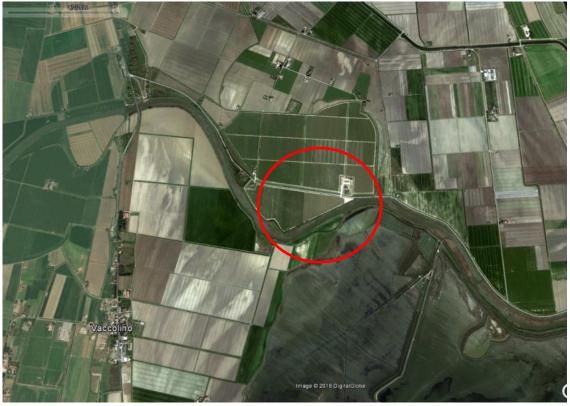


Figura 2 – Ubicazione dell'area di studio. Le tessiture più grossolane corrispondono alle aree più chiare.

Sistema di monitoraggio della falda freatica

Per definire le relazioni di scambio idrico tra la falda freatica e le acque superficiali nella zona oggetto di analisi, in accordo e collaborazione con i tecnici del Canale Emiliano-Romagnolo, è stato dimensionato un apposito sistema di monitoraggio che prevede:

- la messa in opera di un congruo numero di piezometri strumentati con sensori per il monitoraggio in continuo del livello della falda, della conducibilità elettrica e della temperatura all'interno di un appezzamento di terreno adibito a pereto;
- la messa in opera di un piezometro dentro l'alveo del Po di Volano, strumentato con sensore per il
 monitoraggio in continuo del livello della falda, della conducibilità elettrica e della temperatura,
 realizzato in modo da creare un transetto coi piezometri perforati nel pereto.

Nel mese di aprile del 2017, sono stati installati 4 sensori in continuo in altrettanti piezometri posti a distanza crescente rispetto al Fiume e nel mese di luglio dello stesso anno è stato invece installato il sensore nel Po di Volano, per un totale di 5 sensori. Il monitoraggio è proseguito senza interruzioni per tutto il 2018 ed è ancora in corso; sono quindi disponibili oltre 18 mesi di monitoraggio in continuo. L'ubicazione dei piezometri e dei rispettivi sensori è riportata in Figura 3.

Figura 3 – Ubicazione dei piezometri in cui sono state installate le sonde per il monitoraggio

Per installare le sonde sono stati scelti due siti (denominati P7 e P9 in Figura 3) ciascuno dei quali è formato da due piezometri così completati:

- <u>Sito P7</u> (quota -0,63 m s.l.m):
 - Piezometro P7a: profondità = 2.10 m da bocca-foro; sonda a 1.90 m da bocca-foro
 - Piezometro P7b: profondità = 1.63 m da bocca-foro; sonda a 1.60 m da bocca-foro
- Sito P9 (quota -0,78 m s.l.m.):
 - <u>Piezometro P9a:</u> profondità = 2.92 m da bocca-foro; sonda a 2.70 m da bocca-foro
 - Piezometro P9b: profondità = 1.78 m da bocca-foro; sonda a 1.60 m da bocca-foro

Al momento dell'installazione delle sonde è stato eseguito un profilo di conducibilità elettrica (funzione della salinità) in ciascun punto per valutare a quale profondità installare la sonda, nei limiti concessi dalla logistica del sito e dalle considerevoli dimensioni dei sensori. I profili realizzati sono riportati nelle Figure 4 e 5.

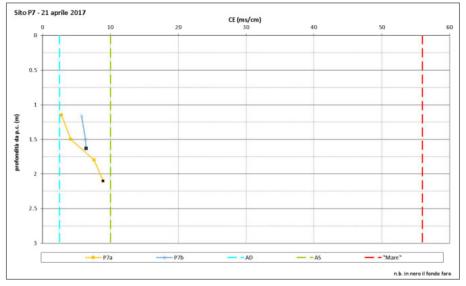


Figura 4 – Profili di conducibilità nei piezometri P7a e P7b

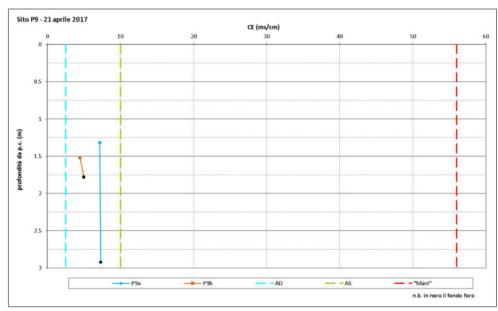


Figura 5 – Profili di conducibilità nei piezometri P9a e P9b

Nei grafici vengono rappresentati come riferimento per la CE: con la linea verticale azzurra il valore di 2.5 mS/cm (limite massimo delle acque destinate al consumo umano D.Lgs 31/01); con la linea verticale verde il valore (scelto a riferimento in modo convenzionale) di 10 mS/cm; con la linea rossa il valore di 56 mS/cm come CE media del Mare Adriatico (come indicato in Piccinini et alii, 2008).

Come si vede, la conducibilità elettrica è piuttosto elevata in tutti e quattro i piezometri e tende ad aumentare con la profondità: nel piezometro P7a si passa da una conducibilità di 2.8 mS/cm a 1.15 m di profondità ad una CE di 8.92 mS/cm a fondo foro; nel piezometro P7b la CE è piuttosto alta già nella parte più superficiale, passando da 5.76 mS/cm a 1.16 m a 6.39 mS/cm a fondo foro; nel piezometro P9a sembra essere più costante, pur avendo una valore piuttosto elevato (7.16 mS/cm a 1.32 m e 7.31 mS/cm a 2.92 m); anche nel piezometro P9b la CE sembra costante, passando da 4.47 mS/cm a 1.52 m a 4.99 mS/cm a 1.78 m.

I dati acquisiti in continuo (con cadenza oraria) dagli strumenti installati sono stati scaricati periodicamente in campo, e successivamente analizzati per comprendere se e quanto il Po di Volano sia in grado di influenzare la salinità nella falda freatica ad esso connessa. I dati raccolti sono stati messi in relazione tra loro e con le piogge cumulate.

Per comprendere la reale dinamica di una falda così superficiale, infatti, è indispensabile tenere in considerazione tutti i termini che possono concorrere all'ingresso e all'uscita dell'acqua e che possano quindi influenzarne il grado di salinità.

La conducibilità elettrica rilevata in continuo è chiaramente riferita alla profondità di installazione della sonda e non consente quindi di avere una valutazione della stratificazione dell'acqua all'interno del piezometro.

Analisi dei dati raccolti

Nella serie di figure che seguono vengono rappresentati i dati raccolti da aprile 2017 a novembre 2018, suddivisi per sito e confrontati tra loro.

• <u>Sito P7:</u>

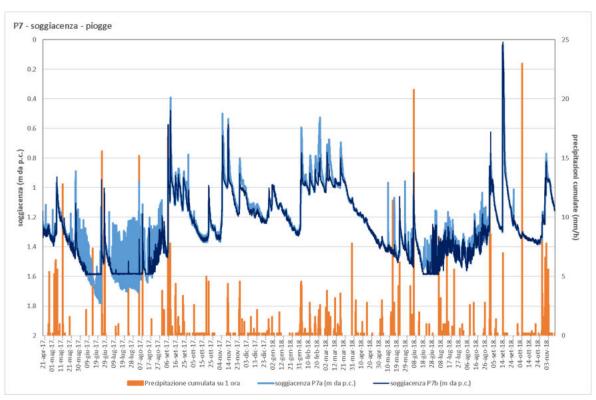


Figura 6 – Confronto tra soggiacenza e precipitazioni nel sito P7

Nella Figura 6 sono messe a confronto la soggiacenza nei due piezometri P7a (più profondo) e P7b (più superficiale) e le precipitazioni cumulate su un'ora nel pluviometro "Campello".

- P7a: la soggiacenza è compresa tra 0.04 m e 1.78 m e sembra essere ben correlata con le precipitazioni. Ciò è particolarmente evidente osservando i dati dei mesi autunno-invernali (da settembre 2017 a maggio 2018 circa) quando, in assenza di irrigazioni, ad ogni picco di precipitazione corrisponde un innalzamento della falda. Il livello della falda nei mesi tardo primaverili-estivi appare molto perturbato, con innalzamenti e abbassamenti repentini, verosimilmente per l'apporto irriguo. Durante tutto il periodo monitorato il piezometro non sembra essere mai rimasto all'asciutto;
- P7b: la soggiacenza è compresa tra 0.02 m e 1.6 m e sembra essere ben correlata con le precipitazioni. Ciò è particolarmente evidente osservando i dati dei mesi autunno-invernali (da settembre 2017 a maggio 2018 circa) quando, in assenza di irrigazioni, ad ogni picco di precipitazione corrisponde un innalzamento della falda. Il livello della falda nei mesi tardo primaverili-estivi appare molto perturbato, con innalzamenti e abbassamenti repentini, verosimilmente per l'apporto irriguo. Nei mesi di giugno e luglio (sia nel 2017 che nel 2018) sono stati registrati dei valori costanti di soggiacenza su valori corrispondenti al fondo del piezometro che ne fanno intuire il prosciugamento, con un abbassamento della falda al di sotto del sensore.

Il livello nei due piezometri si mantiene alla stessa quota per la gran parte del periodo analizzato. Nei picchi di innalzamento, invece, il livello nel piezometro 7a, più profondo, generalmente si alza maggiormente (sino a circa 20 centimetri più del 7b), forse a causa della presenza di orizzonti fini nella stratigrafia del sito. In entrambi i piezometri nell'estate del 2017 il livello è stato inferiore di una ventina centimetri rispetto all'anno successivo.

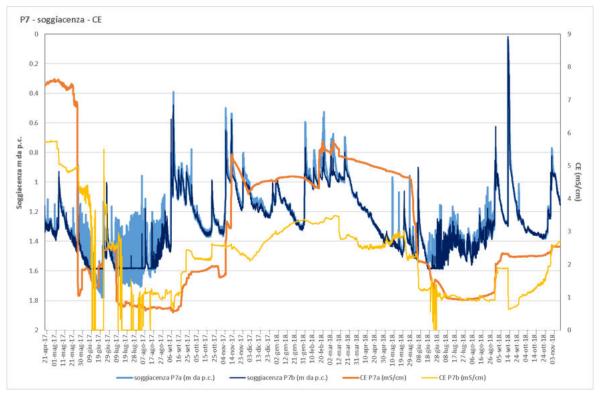


Figura 7 – Confronto tra soggiacenza e CE nel sito P7

Nella Figura 7 sono messe a confronto la soggiacenza e la conducibilità elettrica nei due piezometri P7a e P7b.

- P7a: la CE mostra un andamento stagionale; nel periodo invernale (da novembre a fine maggio) ha valori alti, superiori a 7 mS/cm nel 2017 e attorno a 4.5 mS/cm nel 2018, mentre nel periodo estivo (da fine maggio a novembre) CE diminuisce fino a circa 1 mS/cm, per alzarsi a circa 2 mS/cm da settembre in poi. Nel periodo giugno luglio 2017 la CE mostra alcuni innalzamenti sino a oltre 2 mS/cm
- P7b: anche in questo caso la CE ha un andamento stagionale, nel periodo invernale (da novembre a fine maggio) ha valori alti, oltre 5 mS/cm nel 2017 e attorno a 3 mS/cm nel 2018, mentre nel periodo estivo (da fine maggio a novembre) la CE diminuisce fino a circa 1 mS/cm. Nel periodo giugno luglio 2017 la CE mostra alcuni innalzamenti sino a oltre 2 mS/cm.

Complessivamente l'andamento della CE nei 2 piezometri del sito 7 è molto simile; è del tutto verosimile che la diminuzione estiva della CE sia da mettere in relazione con le pratiche di irrigazione e con la ricarica operata sulla falda dal Po di Volano (vedi oltre). Si nota che i valori di CE nel piezometro più profondo sono più alti nel periodo non irriguo, a significare che la CE in condizioni indisturbate aumenta con la profondità. Durante l'estate l'apporto di acque dolci irrigue e/o la ricarica dal Po di Volano abbassano i valori della CE in entrambi i piezometri, azzerando le differenze dovute alla profondità.

Si osservi che in entrambi i piezometri i valori della CE raggiunti nell'aprile - maggio 2017 sono notevolmente superiori rispetto a quelli dello stesso periodo nell'anno successivo, probabilmente a causa delle minori precipitazioni nel 2017 rispetto all'anno successivo.

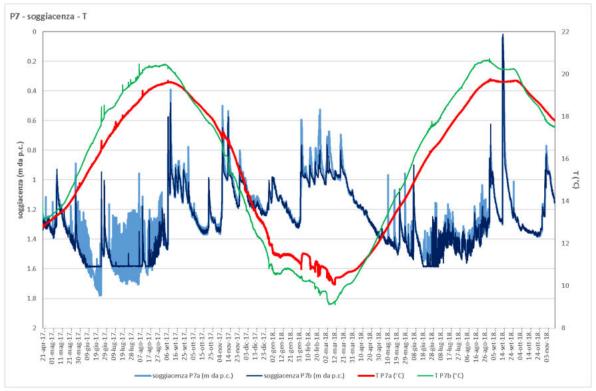


Figura 8 – Confronto tra soggiacenza e temperatura nel sito P7

Nella Figura 8 sono messe a confronto la soggiacenza e la temperatura nei due piezometri P7a e P7b. In entrambi i piezometri, la temperatura ha un andamento che riflette la stagionalità. In qualche caso si notano dei leggeri rialzi (in estate) e degli abbassamenti (in inverno), spesso corrispondenti ad oscillazioni del livello. Il piezometro P7b ha una temperatura mediamente più alta del P7a probabilmente perché è meno profondo e quindi più vicino alle variazioni di temperatura della superficie.

• Sito P9:

Nella Figura 9 sono messe a confronto la soggiacenza nei due piezometri P9a e P9b e le precipitazioni cumulate su un'ora nel pluviometro "Campello".

- P9a: la soggiacenza è compresa tra 0.24 m e 1.87 m e sembra essere ben correlata con le precipitazioni per tutto il periodo monitorato. Non sembrano esserci particolari differenze nella risposta del piezometro nei periodi irrigui e non irrigui, sebbene a partire dall'estate del 2018 il piezometro sembri rispondere maggiormente.
- P9b: la serie storica del piezometro P9b ha un'interruzione nei dati che va da novembre 2017 a marzo 2018 per un malfunzionamento della sonda installata. La soggiacenza è compresa tra 0.15 m e 1.86 m e sembra essere fortemente influenzata dall'apporto irriguo, pur presentando una buona correlazione anche coi picchi di precipitazione. Intorno alla seconda metà del mese di giugno 2017, il piezometro si è asciugato o, comunque, il livello di falda si trovava ad una quota inferiore al sensore installato. Nel 2018 invece il livello è stato più alto ed il sensore non è quindi mai rimasto all'asciutto.

Gli andamenti dei due piezometri sono ben confrontabili tra loro, anche se il piezometro più superficiale risente molto maggiormente delle irrigazioni estive. Inoltre, il valore assoluto del livello piezometrico è a volte diverso, in particolare dall'aprile al novembre 2017 il piezometro più profondo è spesso più alto di 10 – 20 cm, mentre nel periodo maggio – settembre 2018 i rapporti si invertono. Ad oggi non è chiaro perché ci sia questa differenza di comportamento (se pure non molto rilevante) nei due periodi considerati.

Come già osservato nel sito 7, anche in questo caso il livello nell'estate del 2017 è stato inferiore di alcuni decimetri rispetto all'anno successivo.

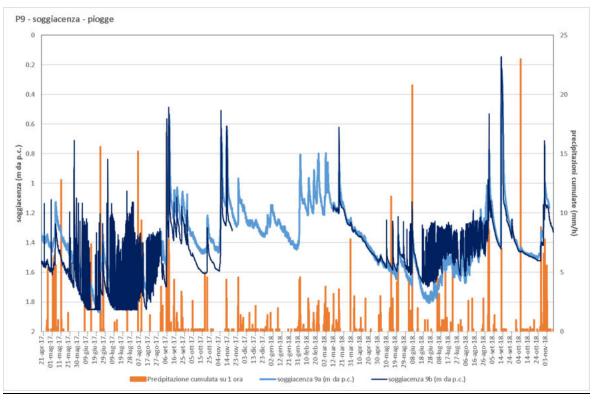


Figura 9 – Confronto tra soggiacenza e precipitazioni nel sito P9

Nella Figura 10 sono messe a confronto la soggiacenza e la conducibilità elettrica nei due piezometri P9a e P9b.

- P9a: all'inizio del periodo monitorato, la CE ha dei valori molto elevati (tra 6 e 7 mS/cm). A partire dal mese di settembre 2017, la CE comincia a scendere, in corrispondenza di un significativo aumento del livello dell'acqua e delle precipitazioni. La CE rimane su valori alti (attorno a 5mS/cm) sino al luglio del 2018, quando abbassa, più o meno in corrispondenza della maggiore risposta del piezometro alle variazioni di livello nel periodo irriguo. A seguito di questo abbassamento la CE arriva a valori di circa 1 mS/cm nel giro di quasi 2 mesi per poi risalire sino a 2 mS/cm.
- P9b: la CE mostra un andamento stagionale, con valori maggiori da settembre a maggio in inverno (da 3 a 5 mS/cm nel 2017 e circa 2.5 mS/c, nel 2018) e inferiori da giugno ad agosto (circa 1 mS/cm). Occorre però precisare che l'acquisizione dei dati non è stata continua.

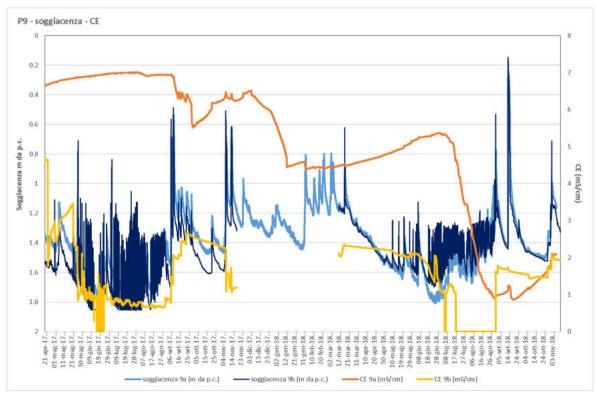


Figura 10 – Confronto tra soggiacenza e CE nel sito P9

L'andamento della CE nei due piezometri è sensibilmente diverso probabilmente in relazione alla presenza di orizzonti fini nella stratigrafia del sito, che tuttavia non influenzano l'andamento del livello piezometrico dei due piezometri che, come detto, è del tutto simile.

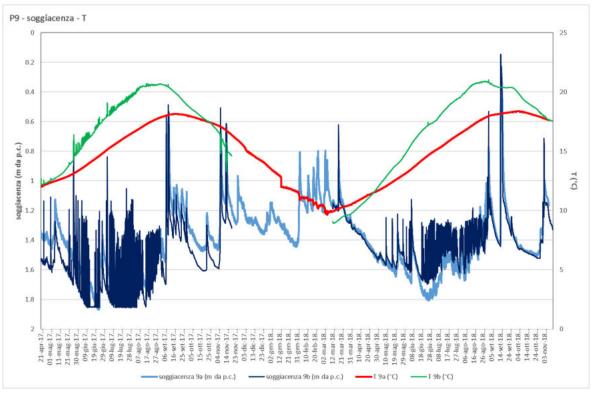


Figura 11 – Confronto tra soggiacenza e temperatura nel sito P9

Nella Figura 11 sono messe a confronto la soggiacenza e la temperatura nei due piezometri P9a e P9b.

In entrambi i piezometri, la temperatura ha un andamento che riflette la stagionalità. Il piezometro P9b ha una temperatura mediamente più alta del P9a probabilmente perché è meno profondo e quindi più vicino alle variazioni di temperatura della superficie. Nel piezometro P9b, si notano dei leggeri rialzi, spesso corrispondenti ad innalzamenti del livello, probabilmente correlabili con le irrigazioni.

Sito Po di Volano

La Figura 12 rappresenta l'andamento del livello idrometrico e della conducibilità elettrica del Po di Volano, misurati in continuo a partire dal 5 luglio 2017.

Il livello idrometrico del Po ha un andamento che evidenzia in modo molto chiaro la presenza di due fenomeni distinti entrambi con andamento sinusoidale. Uno con frequenza giornaliera, con ampiezza variabile da pochi decimetri fino a circa un metro, verosimilmente collegato alle maree, ed uno con frequenza di 15 – 20 giorni e ampiezza di 20 – 40 centimetri (Figura 13), anch'esso in fase con delle oscillazioni marine di grado superiore evidenziate anche dall'andamento del mareografo di Lido di Volano (Figura 14).

Al di la di queste oscillazioni molto evidenti, il livello del Po di Volano non mostra particolari variazioni di quota durante il periodo monitorato, fatto salvo un aumento nel febbraio - marzo 2018.

Va ricordato che il livello idrometrico del Fiume è fortemente condizionato dall'attività antropica. Il Po di Volano è regimato da alcune traverse lungo il suo corso che mantengono sostanzialmente stabile il suo livello per permetterne la navigazione (Ing. A. Bondesan, comunicazione personale).

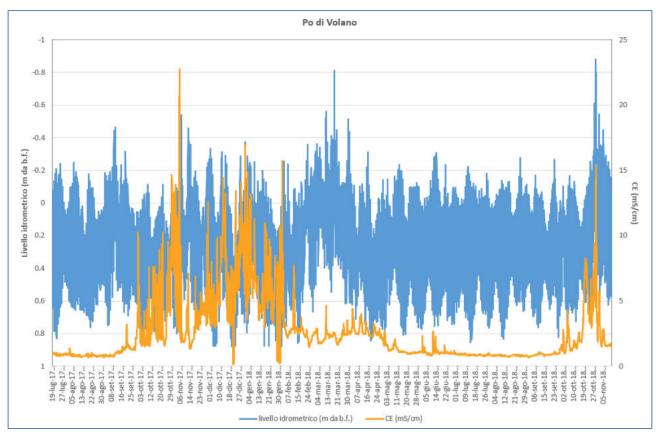


Figura 12 – Confronto tra livello idrometrico e CE nel Po di Volano.

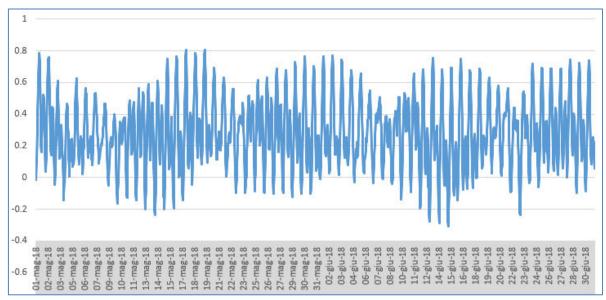


Figura 13. Dettaglio dell'andamento del livello idrometrico del Fiume Po di Volano nel periodo maggio – giugno 2018

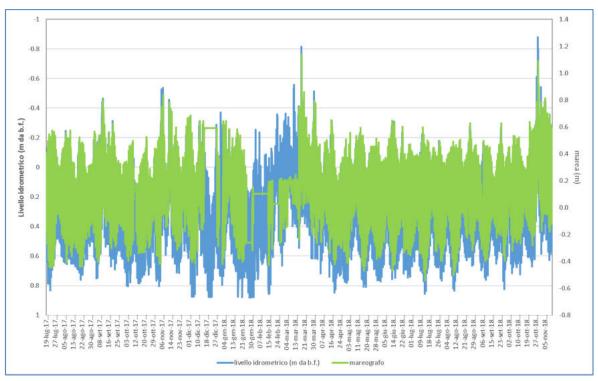


Figura 14 – Confronto tra livello idrometrico del Po di Volano (azzurro) e il livello del mare nel mareografo di Porto Garibaldi (verde). Si osservi che il livello idrometrico del Po di Volano non è riportato in quota assoluta.

Il confronto tra livello idrometrico e precipitazioni nel piezometro installato nel fiume (Figura 15) appare poco significativo a riprova che, probabilmente, in questo tratto, il Fiume è molto più influenzato dall'oscillazione del livello del mare e dalla regimazione della Bonifica che non dal regime delle piogge.

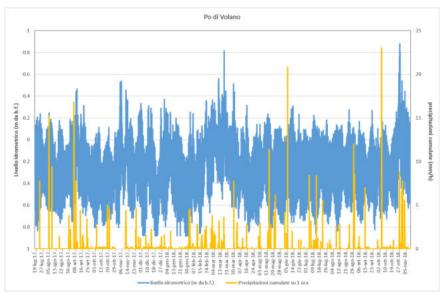


Figura 15 – Confronto tra livello idrometrico nel Po di Volano e precipitazioni cumulate nell'idrometro di Campello

La CE ha un andamento molto diverso nei diversi momenti dell'anno (Figura 12). In estate (maggio settembre) è stabilmente bassa (circa 1 mS/cm), e non è influenzata dalle oscillazioni del livello idrometrico. Da febbraio a maggio 2018 ha valori attorno a 2.5 mS/cm con frequenti oscillazioni. Nei periodi autunnali ed invernali essa è complessivamente molto maggiore, e mostra oscillazioni frequenti con valori spesso superiori a 10 mS/cm e fino a oltre i 20 mS/cm.

Tali oscillazioni sembrano in fase con le oscillazioni del livello idrometrico, ovvero la CE ha valori maggiori durante i picchi del livello idrometrico dovuti alle oscillazioni positive della marea. Quindi gli aumenti della CE nel periodo invernale sono sostanzialmente legati a ingressione di acque marine nel Po causa l'alta marea. L'andamento della CE nel Po di Volano è fortemente condizionato dalla gestione dalla rete di bonifica della pianura ferrarese. Da aprile i canali di bonifica e irrigazione vengono invasati con l'acqua dolce del Po, l'acqua dolce di questi canali viene poi drenata dal Po di Volano, che è topograficamente più basso della rete di bonifica. Inoltre, il Po di Volano nel periodo irriguo riceve l'acqua, anch'essa dolce, del grande impianto idrovoro di Codigoro (Ing. A. Bondesan, comunicazione personale).

Il confronto tra livello idrometrico e temperatura nel piezometro installato nel fiume (Figura 16) appare poco significativo e riflette sostanzialmente un andamento stagionale.

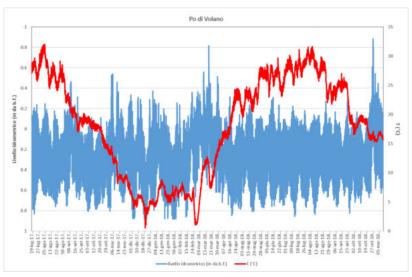


Figura 16 – Confronto tra livello idrometrico e temperatura nel Po di Volano

Analisi comparata dei tre siti monitorati.

La Figura 17 riporta l'andamento, in quota rispetto al livello del mare, del livello piezometrico dei 4 piezometri relativi al sito 7 e 9, e del livello idrometrico del Po di Volano. Non conoscendo in modo preciso la quota di quest'ultimo punto, si è posizionato il livello del Po considerando che essa abbia mediamente una quota simile allo zero sul livello del mare (è chiaro che si tratta di una approssimazione per difetto, ovvero che la quota dovrebbe essere un po' maggiore, forse fino a 0.5 metri, Ing. A. Bondesan comunicazione personale).

La quota del Po è maggiore di oltre un paio di metri rispetto a quella della falda rilevata nei 4 piezometri, e quindi la falda viene alimentata dal fiume. Il livello dei piezometri del sito 7, più alti topograficamente e più vicini al fiume, è sempre maggiore rispetto a quello dei piezometri nel sito 9 (più basso topograficamente). Quindi si documenta un flusso idrico dal Po verso il sito 7, e quindi verso il sito 9.

L'andamento del livello di falda è complessivamente diverso rispetto a quello del livello del Po di Volano. A volte i picchi della falda sono visibili anche nel livello idrometrico del Po (cerchi rossi in figura 17), in altre occasioni ciò invece non è apprezzabile (cerchio verde). Allo stesso tempo le oscillazioni del livello idrometrico dovute alla marea non sono visibili nel livello di falda.

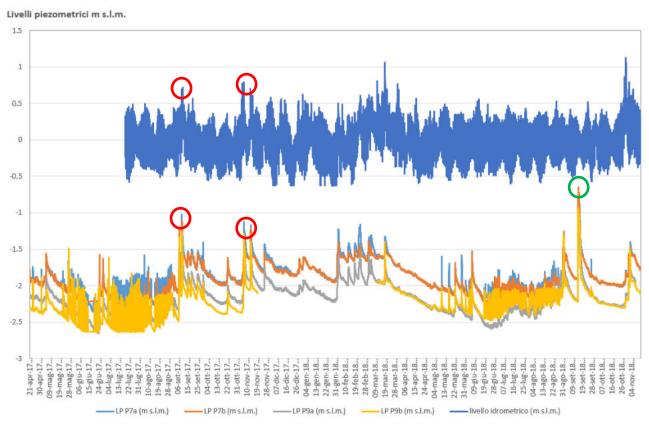


Figura 17. Confronto tra i livelli piezometrici nel sito 7, 9 e livello idrometrico del Po di Volano.

Nella Figura 18 viene confrontata la CE misurata in tutti i punti di controllo. La CE risente di variazioni stagionali, raggiungendo i massimi in inverno ed i minimi in estate in tutti i punti monitorati, tranne il 9a. In buona parte delle due estati monitorate e nella primavera del 2018 i valori della CE del Po, dei piezometri 7a, 7b e 9b sono sostanzialmente identici e pari a circa 1 mS/cm.

Mentre la CE del Fiume è sostanzialmente regolata dalla vicinanza del mare e dalle operazioni della Bonifica, il valore della CE nella falda dipende dalle precipitazioni, dall'irrigazione, dalla ricarica dal Po di Volano e dall'ingressione del cuneo salino nell'acquifero freatico costiero.

Considerata la vicinanza del fiume al sito monitorato e la sua portata, è possibile che la ricarica dal Po di Volano giochi un ruolo molto importante nell'andamento della CE in falda, soprattutto nella sua porzione più prossima al piano campagna (piezometri 7b e 9b).

L'andamento anomalo della CE nel P9a è probabilmente dovuto a motivi geologici, ovvero alla presenza di orizzonti fini che lo separano dalla superficie rispetto agli altri (si consideri anche che il P9a è il più profondo dei 4 piezometri). Tali orizzonti fini tuttavia non influenzano l'andamento del livello piezometrico, che infatti non è particolarmente diverso rispetto agli altri piezometri analizzati.

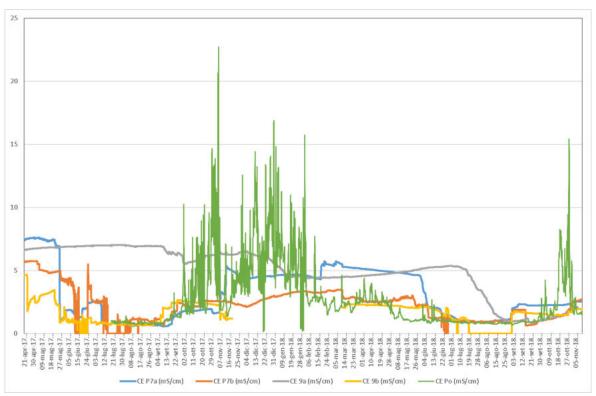


Figura 18 – Confronto tra le CE nel sito 7, 9 e Po di Volano.

Conclusioni

Per definire le relazioni di scambio idrico tra la falda freatica e le acque superficiali nella zona di Pomposa (FE), in accordo e collaborazione coi i tecnici del CER (Canale Emiliano-Romagnolo), è stato dimensionato un apposito sistema di monitoraggio costituito da cinque piezometri strumentati con sonde per la misura in continuo del livello, della temperatura e della conducibilità elettrica specifica.

Il livello piezometrico della falda è influenzato in inverno dalle precipitazioni ed in estate dall'irrigazione. Il livello idrometrico del Po risente maggiormente della vicinanza del mare e delle regimazioni operate dalla Bonifica.

La salinità della falda, qui misurata come conducibilità elettrica, risulta essere influenzata dalle precipitazioni, dal regime delle irrigazioni, dalla ricarica del Po di Volano, dall'ingressione del cuneo salino nell'acquifero freatico costiero, e forse anche dall'uso di particolari sostanze fertilizzanti. La salinità del Po di Volano è da mettere in relazione alla vicinanza del mare ed alle operazioni della Bonifica.

Forse la ricarica dal Po di Volano potrebbe avere rispetto alla salinizzazione della falda un ruolo maggiore rispetto alle altre variabili elencate, ma al momento non si è in grado di definire quali di esse sia effettivamente preponderante.

Ciò potrebbe essere quantificato con un apposito modello numerico, che potrebbe considerare oltre alle variabili qui analizzate anche le condizioni al contorno dovute alla salinizzazione dell'acquifero freatico costiero, il contributo delle irrigazioni, dell'evapotraspirazione, e l'utilizzo di eventuali sostanze fertilizzanti che potrebbero incidere sui valori di CE.